Plasma and Fusion Research

Volume 4, 047 (2009)

Regular Articles


Measurement of Electric Field Distribution along the Plasma Column in Microwave Jet Discharges at Atmospheric Pressure
M. Abdur RAZZAK, Shuichi TAKAMURA, Takayuki TSUJIKAWA, Hideto SHIBATA and Yuto HATAKEYAMA
Department of Electrical and Electronic Engineering, Faculty of Engineering, Aichi Institute of Technology, Toyota 470-0392, Japan
(Received 27 July 2009 / Accepted 7 September 2009 / Published 22 October 2009)

Abstract

A new technique for the direct measurement of electric field distribution along the plasma column in microwave jet discharges is developed and employed. The technique is based on a servomotor-controlled reciprocating antenna moving along the nozzle axis and plasma column. The measurement technique is applied to a rectangular waveguide-based 2.45 GHz argon and helium plasma jets generated by using the modified TIAGO nozzle at atmospheric pressure with a microwave power of less than 500 W. The measurement has been done with and without igniting the plasma jet in order to investigate the standing wave propagation along the nozzle axis and plasma column. It is observed that the electric field decay occurs slowly in space with plasma ignition than that of without plasma, which indicates the surface electromagnetic wave propagation along the plasma column in order to sustain the plasma jet. This study enables one to design, determine and optimize the size and structure of launcher nozzle, which plays an important role for the stable and efficient microwave plasma generators.


Keywords

atmospheric pressure plasma, microwave jet discharge, electric field distribution, TIAGO nozzle

DOI: 10.1585/pfr.4.047


References

  • [1] K. Yamakawa et al., J. Appl. Phys. 98, 013301 (2005).
  • [2] S.J. Kyung et al., J. Appl. Phys. 100, 124303 (2006).
  • [3] M. Laroussi et al., Appl. Phys. Lett. 87, 113902 (2005).
  • [4] S. Ferri et al., AIP Conf. Proc. 1058, 216 (2008).
  • [5] V.I. Afanasyev et al., AIP Conf. Proc. 988, 177 (2008).
  • [6] P.D. Maio et al., AIP Conf. Proc. 513, 274 (2000).
  • [7] S. Takamura et al., Plasma Fusion Res. 3, 012 (2008).
  • [8] M. Moisan et al., Plasma Sources Sci. Technol. 10, 387 (2001).
  • [9] K. Takiyama et al., Rev. Sci. Instrum. 59, 2351 (1988).
  • [10] M. Watanabe et al., Rev. Sci. Instrum. 70, 903 (1999).
  • [11] T. Kampschulte et al., New J. Phys. 9, 18 (2007).
  • [12] Y.W. Choi et al., Appl. Phys. Lett. 69, 1361 (1996).
  • [13] J.P. Booth et al., Appl. Phys. Lett. 65, 819 (1994).
  • [14] B.N. Ganguly et al., Plasma Sources Sci. Technol. 9, 437 (2000).
  • [15] C. Pérez et al., AIP Conf. Proc. 1058, 15 (2008).
  • [16] T. Kobayashi et al., Rev. Sci. Instrum. 75, 4121 (2004).
  • [17] A. Demura et al., AIP Conf. Proc. 645, 79 (2002).
  • [18] S. Reyes Cortes et al., Rev. Sci. Instrum. 74, 1596 (2003).
  • [19] A. Steiger et al., AIP Conf. Proc. 645, 86 (2002).
  • [20] E.K. Cherkasova et al., AIP Conf. Proc. 645, 413 (2002).
  • [21] K. Kamiya et al., Rev. Sci. Instrum. 72, 2931 (2001).
  • [22] V.P. Gavrilenko et al., Phys. Rev. E 62, 7201 (2000).
  • [23] B.W. Rice et al., Rev. Sci. Instrum. 70, 815 (1999).
  • [24] Y. Lee et al., Rev. Sci. Instrum. 68, 4427 (1997).
  • [25] A. Kumada et al., J. Appl. Phys. 84, 3059 (1998).
  • [26] G. Roussy et al., Meas. Sci. Technol. 11, 1145 (2000).
  • [27] T. Ito et al., J. Phys. D: Appl. Phys. 42, 092003 (2009).
  • [28] C. Charles et al., Phys. Plasmas 7, 5232 (2000).
  • [29] V.I. Davydenko et al., Plasma Phys. Control. Fusion 36, 1805 (1994).
  • [30] N. Claire et al., Rev. Sci. Instrum. 72, 4372 (2001).
  • [31] J.H. Lee et al., Rev. Sci. Instrum. 68, 462 (1997).
  • [32] S.V. Ratynskaia et al., Phys. Plasmas 9, 4135 (2002).
  • [33] R. Schrittwieser et al., AIP Conf. Proc. 669, 211 (2003).
  • [34] P. Pribyl et al., Rev. Sci. Instrum. 77, 073504 (2006).

This paper may be cited as follows:

M. Abdur RAZZAK, Shuichi TAKAMURA, Takayuki TSUJIKAWA, Hideto SHIBATA and Yuto HATAKEYAMA, Plasma Fusion Res. 4, 047 (2009).