Plasma and Fusion Research

Volume 4, 022 (2009)

Regular Articles


High Beta and High Density Operation in TPE-RX
Haruhisa KOGUCHI, Hajime SAKAKITA, Satoru KIYAMA, Kiyoyuki YAMBE, Tomohiko ASAI1), Yoichi HIRANO, Fulvio AURIEMMA2), David TERRANOVA2) and Paolo INNOCENTE2)
Energy Technology Research Institute (ETRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
1)
College of Science and Technology, Nihon University, Tokyo 101-8308, Japan
2)
Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, corso Stati Uniti 4, 35127 Padova, Italy
(Received 14 January 2009 / Accepted 11 March 2009 / Published 15 May 2009)

Abstract

A high poloidal beta, βp, was achieved using pulsed poloidal current drive (PPCD) in a toroidal pinch experiment-RX (TPE-RX). The plasma electron density and temperature increased, hence improving βp from 5 to 30% during PPCD. βp is almost equal to the total beta in the reversed-field pinch (RFP). D-alpha emission from recycling deuterium by the plasma-wall interaction decreased during the PPCD. An improved particle confinement time was indicated by a ten fold increase in the ratio of the total number of particles to the D-alpha emission. Single pellet injection into the good particle confinement plasma, achieved by the PPCD, produced high density plasma with high beta values. The plasma electron density rapidly increased to triple that of standard plasma, and high density was maintained till the end of the PPCD period. The electron temperature was lower than that of PPCD without ice pellet injection, but βp remained almost the same because the plasma electron density was higher with pellet injection.


Keywords

reversed-field pinch (RFP), pulsed poloidal current drive (PPCD), high-beta plasma, pellet injection

DOI: 10.1585/pfr.4.022


References

  • [1] Y. Yagi, S. Sekine et al., Fusion Eng. Des. 45, 409 (1999).
  • [2] H.A.B. Bodin and A.A. Newton, Nucl. Fusion 20, 1255 (1980).
  • [3] Y. Hirano et al., Nucl. Fusion 36, 721 (1996).
  • [4] J.S. Sarff et al., Phys. Rev. Lett. 72, 3670 (1994).
  • [5] D.J. Den Hartog et al., Proc. 21st IAEA Fusion Energy Conference (Chengdu, China 2006) EX/8-2.
  • [6] H. Koguchi et al., Proc. 21st IAEA Fusion Energy Conference (Chengdu, China 2006) EX/P3-8.
  • [7] S. Martini et al., Proc. 21st IAEA Fusion Energy Conference (Chengdu, China 2006) EX/7-3.
  • [8] L. Frassinetti et al., Phys. Plasmas 11, 5229 (2004).
  • [9] B.E. Chapman, A.F. Almagri, J.K. Anderson et al., Phys. Plasmas 9, 2061 (2002).
  • [10] A. Canton et al., Plasma Phys. Control. Fusion 46, 23 (2004).
  • [11] H. Koguchi et al., Jpn. J. Appl. Phys. 45(42), L1124 (2006).
  • [12] D. Pasqualini et al., J. Phys. Soc. Jpn., 75, No.2, 023501 (2006).
  • [13] Y. Hirano, J. Plasma Fusion Res. 77, 793 (2001), in Japanese.
  • [14] H. Sorensen et al., Proc. 14th Symp., Fusion Technology, Avignon (1986) p.1355.
  • [15] P. Innocente et al., Rev. Sci. Instrum 70, 943 (1999).

This paper may be cited as follows:

Haruhisa KOGUCHI, Hajime SAKAKITA, Satoru KIYAMA, Kiyoyuki YAMBE, Tomohiko ASAI, Yoichi HIRANO, Fulvio AURIEMMA, David TERRANOVA and Paolo INNOCENTE, Plasma Fusion Res. 4, 022 (2009).