Plasma and Fusion Research
Volume 4, 002 (2009)
Regular Articles
- National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
Abstract
Two types of solid hydrogen pellet injection systems have been developed, and plasma refueling experiments have been performed using these pellet injectors. One is an in-situ pipe-gun type pellet injector, which has the simplest design of all pellet injectors. This in-situ pipe-gun injector has 10 injection barrels, each of which can independently inject cylindrical solid hydrogen pellets (3.4 and 3.8 mm in diameter and length, respectively) at velocities up to 1,200 m/s. The other is a repetitive pellet injector with a screw extruder, which can form a 3.0 mmφ solid hydrogen rod continuously at extrusion rates up to 55 mm/s. This extruder allows consecutive pellet injection up to 11 Hz without time limit. Both of these pellet injectors employ compact cryo-coolers to solidify hydrogen; therefore, they can be operated using only electrical input instead of a complicated liquid helium supply system. In particular, using a combination of the repetitive pellet injector with cryo-coolers provides a steady-state capability with minimum maintenance.
Keywords
solid hydrogen pellet, fueling, cryo-cooler, pellet injector, steady state operation
Full Text
References
- [1] S.L. Milora, Nucl. Fusion 35, 657 (1995).
- [2] B. Pégourié, Plasma Phys. Control. Fusion 49, R87 (2007).
- [3] S.K. Combs, Rev. Sci. Instrum. 64, 1679 (1993).
- [4] J. Urbahn et al., Proceedings of 15th Symposium on Fusion Engineering Vol. 1, 44 (1993).
- [5] S.K. Combs et al., Rev. Sci. Instrum. 60, 2697 (1989).
- [6] C. Andelfinger et al., Rev. Sci. Instrum. 64, 983 (1993).
- [7] S.K. Combs et al., Rev. Sci. Instrum. 66, 2736 (1995).
- [8] Y. Oda et al., Vacuum 41, 1510 (1990).
- [9] K. Kizu et al., Fusion Sci. Technol. 42, 396 (2002).
- [10] H. Yamada et al., Fusion Eng. Des. 49-50, 915 (2000).
- [11] H. Yamada et al., Fusion Eng. Des. 69, 11 (2003).
- [12] P.C. Souers, Hydrogen properties for fusion energy (Berkeley : University of California Press, 1986).
- [13] J. Lafferranderie et al., Proceedings of 14th Symposium on Fusion Technology Vol. 2, 1367 (1986).
- [14] R. Sakamoto et al., Nucl. Fusion 41, 381 (2001).
- [15] R. Sakamoto et al., Plasma Fusion Res. 2, 047 (2007).
- [16] S.K. Combs et al., Rev. Sci. Instrum. 56, 1173 (1985).
- [17] Y. Oda et al., Proceedings of 18th Symposium on Fusion Technology Vol. 1, 661 (1994).
- [18] I. Viniar et al., Instrum. Exp. Tech. 43, 722 (2000).
- [19] I. Viniar et al., Fusion Eng. Des. 58-59, 295 (2001).
- [20] L.R. Baylor et al., Phys. Plasmas 12, 056103 (2005).
- [21] L.R. Baylor et al., Nucl. Fusion 47, 443 (2007).
- [22] L.D. Landau and E.M. Lifshitz, Fluid mechanics (Pergamon Press, 1987).
- [23] R. Sakamoto et al., Nucl. Fusion 46, 884 (2006).
- [24] T. Seki et al., AIP Conf. Proc. 787, 98 (2005).
This paper may be cited as follows:
Ryuichi SAKAMOTO, Hiroshi YAMADA and LHD experimental group, Plasma Fusion Res. 4, 002 (2009).