Plasma and Fusion Research
Volume 3, S1071 (2008)
Regular Articles
- National Institute of Fusion Science, Toki 509-5292, Japan
- 1)
- Budker Institute for Nuclear Physics, Novisibirsk, Russia
- 2)
- Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan
- 3)
- Chubu University, Kasugai 487-8501, Japan
Abstract
Density fluctuations are analyzed in high volume average beta and high core density discharges in the Large Helical Device (LHD) using a 2D phase contrast imaging system and far infra-red interferometer. Both these regimes share similarly high beta gradients and evidence of pressure driven MHD modes is presented. In high volume average beta plasmas, both large and ion-gyro scale density fluctuation levels increase with beta and, in the edge, compare favorably with growth rate of resistive interchange modes, showing additional dependence on density at fixed β. In high core density plasmas with internal diffusion barrier, intermittent fluctuation bursts around mid radius are observed which are triggered when the normalized density gradient exceeds a certain threshold. The intermittent character is stronger for outward shifted plasmas and there appears to be a fluctuation suppression mechanism, possibly related to temperature gradient.
Keywords
high beta, density fluctuation, phase contrast imaging, MHD, resistive interchange, super dense core regime, ion temperature gradient turbulence
Full Text
References
- [1] K.Y. Watanabe, Confinement study on the reactor relevant high beta LHD plasmas. these proceedings, (2008).
- [2] N. Ohyabu et al., Phys Rev Lett 97, 055002/1 (2006).
- [3] S. Sakakibara et al., Fusion Sci. Technol. 50, 177 (2006).
- [4] K.Y. Watababe et al., Nucl. Fusion 45, 1247 (2005).
- [5] H. Funaba et al., Fusion Sci. Technol. 51, 129 (2007).
- [6] K. Kawahata et al., Fusion Eng. Des. 34-35, 393 (1997).
- [7] A.L. Sanin et al., Rev. Sci. Instrum. 75, 3439 (2004).
- [8] L.N. Vyacheslavov et al., IEEE Trans. Plas. Sci. 33, 464 (2005).
- [9] C.A. Michael et al., Rev. Sci. Instrum. 77, 10E923 (2006).
- [10] C.A. Michael et al., Plasma Fusion Res. 2, S1034 (2007).
- [11] H. Wiesen et al., Plasma Phys. Control. Fusion 30, 293 (1988).
- [12] K.Y. Watanabe et al., Nucl. Fusion 45, 1247 (2005).
- [13] A. Komori et al., Phys. Plasmas 12, 56122 (2005).
- [14] K. Tanaka et al., Fusion Sci. Technol. 51, 97 (2007).
- [15] K. Itoh et al., Plasma Phys. Control. Fusion 36, 279 (1993).
- [16] P. Snyder. Phd thesis, Princeton, (1999).
- [17] B.A. Carreras et al., Phys Fluids 30, 1388 (1987).
- [18] B.A. Carreras and P. H. Diamond, Phys. Fluids B 1, 1011 (1989).
- [19] M. Wakatani. Resistive interchange turbulence. AIP Conference Proceedings. Two-Dimensional Turbulence in Plasmas and Fluids. Canberra, ACT, Australia, page 141 (1997).
- [20] K. Itoh et al., Plasma Phys. Control. Fusion 36, 123 (1993).
- [21] T. Dannert and F. Jenko, Phys. Plasmas 12, 72309 (2005).
- [22] C.A. Michael et al., Image analysis method for spatial localization of fluctuations using 2d phase contrast imaging on LHD. submitted to Rev. Sci. Instrum, (2008).
- [23] K. Ida et al., Phys. Rev. Lett. 100, 045003 (2008).
- [24] S. Murakami et al., Fusion Technol. 27, 256 (1995).
- [25] H. Howe, ORNL/TM-11521 (1990).
- [26] R. Sakamoto et al., These proceedings (2008).
- [27] K. Tanaka et al., Plasma Fusion Res. 2, S1033 (2007).
- [28] J. Miyazawa et al., These proceedings, (2008).
This paper may be cited as follows:
Clive MICHAEL, Kenji TANAKA, Leonid VYACHESLAVOV, Andrei SANIN, Tsuyoshi AKIYAMA, Yoshiro NARUSHIMA, Kiyomasa WATANABE, Hisamichi FUNABA, Sadayoshi MURAKAMI, Katsumi IDA, Mikiro YOSHINUMA, Ryuichi SAKAMOTO, Kazuo KAWAHATA and Shigeki OKAJIMA, Plasma Fusion Res. 3, S1071 (2008).