Plasma and Fusion Research

Volume 3, S1048 (2008)

Regular Articles


Internal Transport Barrier Formation and Pellet Injection Simulation in Helical and Tokamak Reactors
You HIGASHIYAMA, Kozo YAMAZAKI, Jeronimo GARCIA1), Hideki ARIMOTO and Tatsuo SHOJI
Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
1)
Universitat Polite ‘cnica de Catalunya (UPC), Barcelona, Spain
(Received 16 November 2007 / Accepted 17 March 2008 / Published 4 August 2008)

Abstract

In the future fusion reactor, plasma density peaking is important for increase in the fusion power gain and for achievement of confinement improvement mode. Density control and internal transport barrier (ITB) formation due to pellet injection have been simulated in tokamak and helical reactors using the toroidal transport linkage code TOTAL. First, pellet injection simulation is carried out, including the neutral gas shielding model and the mass relocation model in the TOTAL code, and the effectiveness of high-field side (HFS) pellet injection is clarified. Second, ITB simulation with pellet injection is carried out with the confinement improvement model based on the E × B shear effects, and it is found that deep pellet penetration is helpful for ITB formation as well as plasma core fuelling in the reversed-shear tokamak and helical reactors.


Keywords

transport simulation, internal transport barrier, pellet injection, tokamak reactor, helical reactor

DOI: 10.1585/pfr.3.S1048


References

  • [1] P. Parks et al., Nucl. Fusion 17, 539 (1977).
  • [2] S. Milora and C. Poster, IEEE Trans. Plasma Sci. PS-6, 578 (1978).
  • [3] P.B. Parks and R.J. Turnbull, Phys. Fluids 21, 1735 (1978).
  • [4] L.R. Bayler et al., Nucl. Fusion 32, 2177 (1992).
  • [5] P.T. Lang et al., Phys. Rev. Lett. 79, 1478 (1997).
  • [6] L.R. Bayler et al., Fusion Technol. 34, 425 (1998).
  • [7] S. Ishida et al., Proc. 14th Int. Conf. Plasma Physics Controlled Nuclear Fusion Research (Würzburg, 1992) vol 1 (Vienna: IAEA) 219 (1993).
  • [8] H. Kimura et al., Phys. Plasmas 3, 1943 (1996).
  • [9] JET Team (presented by Schmidt G L) Proc. 12th Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research (Nice, 1988) vol 1 (Vienna: IAEA) 215 (1989).
  • [10] B. Tubbing et al., Nucl. Fusion 31, 839 (1991).
  • [11] J. Garcia, K. Yamazaki, J. Dies and J. Izquierdo, Phys. Rev. Lett. 96, 105007 (2006).
  • [12] T. Tala et al., Plasma Phys. Control. Fusion 43, 507 (2001).
  • [13] K. Yamazaki and T. Amano, Nucl. Fusion 32, 633 (1992).
  • [14] K. Yamazaki et al., Fus. Eng. Des. 81, 2743 (2006).
  • [15] T.S. Hahm and K.H. Burrell, Phys. Plasmas 2, 1648 (1995).
  • [16] P. Zhou, W. Horton and H. Sugama, Phys. Plasmas 6, 2503 (1999).
  • [17] D.R. Ernst et al., Phys. Plasmas 7, 615 (2000).
  • [18] Y.B. Kim, P.H. Diamond and R.J. Groebner, Phys. Fluids B3, 2050 (1991).
  • [19] F.L. Hinton and G.M. Staebler, Phys. Fluids B 5, 1281 (1993)
  • [20] B. Esposito et al., Plasma Phys. Control. Fusion 45, 933 (2003).
  • [21] M. Gouge et al., Fusion Technol. 19, 95 (1991).
  • [22] W. Houlberg et al., Nucl. Fusion 28, 595 (1988).
  • [23] W. Houlberg et al., Nucl. Fusion 32, 1951 (1992).
  • [24] M. Kaufmann et al., Nucl. Fusion 26, 171 (1986).
  • [25] P. Parks Nucl. Fusion 32, 2137 (1992).
  • [26] B. Pegourie et al., Nucl. Fusion 33, 591 (1993).
  • [27] B. Kuteev Nucl. Fusion 35, 431 (1995).
  • [28] A.R. Polevoi and M. Shimada, Plasma Phys. Control. Fusion 43, 1525 (2001).
  • [29] R. Sakamoto et al., Proc. 29th EPS Conf. Plasma Phys. Contr. Fusion, (Montreux, 2002), ECA Vol.26B, P-1.074 (2002).
  • [30] W.A. Houlberg et al., Phys. Plasma 4, 3230 (1997).

This paper may be cited as follows:

You HIGASHIYAMA, Kozo YAMAZAKI, Jeronimo GARCIA, Hideki ARIMOTO and Tatsuo SHOJI, Plasma Fusion Res. 3, S1048 (2008).