Plasma and Fusion Research
Volume 3, S1007 (2008)
Regular Articles
- Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193, Japan
Abstract
The roles of momentum transport on the toroidal rotation velocity (Vt) profile and the properties of transport coefficients are found by transient momentum transport analysis. The perturbation technique enables us to evaluate the momentum diffusivity (χφ) and the convection velocity (Vconv), and to calculate Vt profiles driven by external torque input by neutral beams (NBs). The measured Vt profiles with and without the external torque input are almost reproduced by χφ and Vconv in low-β (βN < 0.4) plasmas. At higher β, the local pressure gradient plays a role in determining the local value of intrinsic rotation velocity. Concerning the momentum transport, χφ increases with increasing heating power, and decreases with increasing plasma current (Ip). In H-mode plasmas, χφ is smaller than that in L-mode plasmas under similar experimental conditions. It is found that χφ, which is separated from the non-diffusive term increases with increasing heat diffusivity (χi), χφ/χi ∼ 1-3, and -Vconv increases with increasing χφ, Vconv/χφ ∼ -2.5 to -0.7 m-1 , in H-mode plasmas.
Keywords
toroidal rotation velocity, momentum transport, L-mode, H-mode
Full Text
References
- [1] Y. Kamada, Plasma Phys. Control. Fusion 42, A65 (2000).
- [2] Special issue on Progress in the ITER Physics Basis [Nucl. Fusion 47, S18 (2007)].
- [3] D.J. Ward et al., Phys. Plasmas 2, 1570 (1995).
- [4] M. Takechi et al., Phys. Rev. Lett. 98, 055002 (2007).
- [5] H. Reimerdes et al., Phys. Rev. Lett. 98, 055001 (2007).
- [6] E.J. Synakowski et al., Nucl. Fusion 39, 1733 (1999).
- [7] Y. Sakamoto et al., Nucl. Fusion 41, 865 (2001).
- [8] T. Luce et al., in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006 (IAEA, China, 2006) PD3.
- [9] J. Kim et al., Phys. Rev. Lett. 72, 2199 (1994).
- [10] K. Nagashima et al., Nucl. Fusion 34, 449 (1994).
- [11] K. Ida et al., J. Phys. Soc. Jap. 67, 4089 (1998).
- [12] ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modeling and Database and ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999).
- [13] W.D. Lee et al., Phys. Rev. Lett. 91, 205003 (2003).
- [14] M. Yoshida et al., Plasma Phys. Control. Fusion 48, 1673 (2006).
- [15] A. Bortolon et al., Phys. Rev. Lett. 97, 235003 (2006).
- [16] T. Tala et al., Nucl. Fusion 47, 1012 (2007).
- [17] J. E. Rice et al., Nucl. Fusion 47, 1618 (2007).
- [18] M. Yoshida et al., Nucl. Fusion 47, 856 (2007).
- [19] M. Yoshida et al., Phys. Rev. Lett. in press.
- [20] T. Tala et al., Plasma Phys. Control. Fusion 49, B291 (2007).
- [21] Y.B. Kim, P.H. Diamond and R.J. Groebner, Phys. Fluids B 3, 2050 (1991).
- [22] B. Coppi, Nucl. Fusion 42, 1 (2002).
- [23] O.D. Gurcan, P.H. Diamond, T.S. Hahm, et al., Phys. Plasmas 14, 042306 (2007).
- [24] T.S Hahm, P.H. Diamond, O.D Gurcan and G. Rewoldt, Phys. Plasmas 14, 072302 (2007).
- [25] A.G. Peeters, C. Angioni and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007).
- [26] K. Shinohara et al., Nucl. Fusion 47, 997 (2007).
- [27] H. Takenaga and the JT-60 Team, Nucl. Fusion 47, S563 (2007).
- [28] Y. Koide et al., Rev. Sci. Instrum. 72, 119 (2001).
- [29] H. Shirai et al., in Plasma Physics and Controlled Nuclear Fusion Research 1994 (Proc. 15th Int. Conf. Seville, 1994), Vol. 1, p. 355, IAEA, Vienna (1995).
This paper may be cited as follows:
Maiko YOSHIDA, Yutaka KAMADA, Hidenobu TAKENAGA, Yoshiteru SAKAMOTO, Hajime URANO, Naoyuki OYAMA, Go MATSUNAGA and the JT-60 Team, Plasma Fusion Res. 3, S1007 (2008).