Plasma and Fusion Research
Volume 3, 063 (2008)
Regular Articles
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Abstract
A diagnostic method for measuring nonlinear evolution of a laser wakefield by multiple sidebands of Raman scattering using probe laser light has been reported. In this paper, particle-in-cell simulations are used to demonstrate the validity of this probing method. The influence of plasma density, pump laser intensity, propagation length, and nonlinearity of the wakefield on probe laser light has been investigated. In particular, when trapping and acceleration of electrons occurs, the wing structure of the spectrum of probe laser light indicates the existence of highly relativistic electrons from which the injection fraction of the accelerated electrons can be obtained. Thus, this diagnostic method can be employed to measure laser wakefields conveniently for various purposes.
Keywords
intense laser, wakefield, Raman scattering, probe laser light, particle-in-cell simulation
Full Text
References
- [1] T. Tajima and J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
- [2] P. Sprangle, E. Esarey, A. Ting and G. Joyce, Appl. Phys. Lett. 53, 2146 (1988).
- [3] P. Sprangle, E. Esarey and A. Ting, Phys. Rev. Lett. 64, 2011 (1990).
- [4] P. Sprangle, E. Esarey, J. Krall and G. Joyce, Phys. Rev. Lett. 69, 2200 (1992).
- [5] T.M. Antonsen and P. Mora, Phys. Rev. Lett. 69, 2204 (1992).
- [6] E. Esarey, J. Krall and P. Sprangle, Phys. Rev. Lett. 72, 2887 (1994).
- [7] E. Esarey, B. Hafizi, R. Hubbard and A. Ting, Phys. Rev. Lett. 80, 5552 (1998).
- [8] W.B. Mori, C. Joshi and J.M. Dawson, Phys. Rev. Lett. 60, 1298 (1988).
- [9] K.-C. Tzeng, W.B. Mori and T. Katsouleas, Phys. Rev. Lett. 79, 5258 (1997).
- [10] F.S. Tsung, R. Narang, W.B. Mori, C. Joshi, R.A. Fonseca and L.O. Silva, Phys. Rev. Lett. 93, 185002 (2004).
- [11] A. Modena, Z. Najmudin, A.E. Dangor et al., Nature (London) 377, 606 (1995).
- [12] D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou and R. Wagner, Science 273, 472 (1996).
- [13] V. Malka, S. Fritzler, E. Lefebvre et al., Science 298, 1596 (2002).
- [14] D. Umstadter, J.K. Kim and E. Dodd, Phys. Rev. Lett. 76, 2073 (1996).
- [15] E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting and P. Sprangle, Phys. Rev. Lett. 79, 2682 (1997).
- [16] A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)
- [17] K. Nakajima, D. Fisher, T. Kawakubo et al., Phys. Rev. Lett. 74, 4428 (1995).
- [18] C.A. Coverdale, C.B. Darrow, C.D. Decker et al., Phys. Rev. Lett. 74, 4659 (1995).
- [19] C.I. Moore, A. Ting, K. Krushelnick, E. Esarey, R.F. Hubbard, B. Hafizi, H.R. Burris, C. Manka and P. Sprangle, Phys. Rev. Lett. 79, 3909 (1997).
- [20] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec and V. Malka, Nature (London) 444, 737 (2006).
- [21] S.P. Mangles, C.D. Murphy, Z. Najmudin et al., Nature (London) 431, 535 (2004).
- [22] C.G.R. Geddes, Cs. Toth, J. van Tilborg et al., Nature (London) 431, 538 (2004).
- [23] J. Faure, Y. Glinec, A. Pukhov et al., Nature (London) 431, 541 (2004).
- [24] C.-L. Chang, C.-T. Hsieh, Y.-C. Ho et al., Phys. Rev. E 75, 036402 (2007).
- [25] J.R. Marquès, J.P. Geindre, F. Amiranoff, P. Audebert, J.C. Gauthier, A. Antonetti and G. Grillon, Phys. Rev. Lett. 76, 3566 (1996).
- [26] S.C. Siders, S.P. Le Blanc, D. Fisher, T. Tajima and M.C. Downer, Phys. Rev. Lett. 76, 3570 (1996).
- [27] J.M. Dias, L. Oliveira e Silva and J.T. Mendoça, Phys. Rev. ST Accel. Beams 1, 031301 (1998).
- [28] R.E. Slusher and C.M. Surko, Phys. Fluids 23, 472 (1980).
- [29] A. Ting, K. Krushelnick, C.I. Moore et al., Phys. Rev. Lett. 77, 5377 (1996).
- [30] S.P. Le Blanc, M.C. Downer, R. Wagner et al., Phys. Rev. Lett. 77, 5381 (1996).
- [31] A.G.R. Thomson, S.P.D. Mangles, Z. Najmudin, M.C. Kaluza, C.D. Murphy and K. Krushelnick, Phys. Rev. Lett. 98, 054802 (2007).
- [32] W. Zhou, K. Mima, T. Nakamura and H. Nagatomo, Phys. Plasmas 15, 093107 (2008).
This paper may be cited as follows:
Weimin ZHOU, Kunioki MIMA and Hideo NAGATOMO, Plasma Fusion Res. 3, 063 (2008).