Plasma and Fusion Research

Volume 3, 043 (2008)

Regular Articles


Optimization of Extreme Ultraviolet Emission from Laser-Produced Tin Plasmas Based on Radiation Hydrodynamics Simulations
Atsushi SUNAHARA, Katsunobu NISHIHARA1) and Akira SASAKI2)
Institute for Laser Technology, 2-6 Yamadaoka Suita Osaka 565-0871, Japan
1)
Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka Suita Osaka 565-0871, Japan
2)
Advanced Photon Research Institute of Japan Atomic Energy Agency, 8-1 Umemidai Kizugawa Kyoto 619-0215, Japan
(Received 14 April 2008 / Accepted 6 June 2008 / Published 4 August 2008)

Abstract

We investigated the plasma conditions for obtaining highly efficient extreme ultraviolet light from laserproduced tin plasmas for lithography of next generation semiconductors. Based on accurate atomic data tables calculated using the detailed configuration accounting code, we conducted 1-D radiation hydrodynamic simulations to calculate the dynamics of tin plasma and its emission of extreme ultraviolet light. We included the photo-excitation effect in the radiation transport. Our simulation reproduced experimental observations successfully. Using our verified code, we found that a CO2 laser can be useful in obtaining higher conversion efficiencies up to 4%.


Keywords

EUV, lithography, radiation hydrodynamics, conversion efficiency, laser-produced tin plasma

DOI: 10.1585/pfr.3.043


References

  • [1] V. Bakshi editor EUV Sources for Lithography (SPIE Press., 2005).
  • [2] R.C. Spitzer, R.L. Kauffman, T. Orzechowski, D. Phillion and C. Cerjan, J. Vac. Sci. Technol B 11, 2986 (1993); R.C. Spitzer et al., J. Appl. Phys. 79, 2251 (1996).
  • [3] S.I. Braginskii, Reviews of Plasma Physics, 1, Consultants Bureau 205(1965). 1, 265 (1958).
  • [4] L. Spitzer Jr. and R. Harm, Phys. Rev. 89, 977 (1953).
  • [5] L. Spitzer Jr., Physics of Fully Ionized Gases (John Wiley & Sons Inc., 1962) p.115.
  • [6] R.C. Malone, R.L. McCrory and R.L. Morse, Phys. Rev. Lett. 34, 721 (1975).
  • [7] W.L. Kruer, The physics of Laser Plasma Interactions (Addison-Wesley Pub., 1988) p.48.
  • [8] S. Skupsky, Phys. Rev. A 36, 5701 (1987).
  • [9] A.B. Langdon, Phys. Rev. Lett. 44, 575(1980).
  • [10] R.M. More, K.H. Warren, D.A. Young and G.B. Zimmerman, Phys Fluids 31, 3059 (1988).
  • [11] R.C. Malone, R.L. McCrory and R.L. Morse, Phys. Rev. Lett. 34, 721 (1975).
  • [12] A. Sasaki, J. Plasma Fusion Res. 79, 315 (2003) ; A. Sasaki, K. Nishihara, A. Sunahara, T. Nishikawa, F. Koike, K. Kagawa and H. Tanuma Proc. SPIE 6151, 61513W (2006) ; A. Sasaki et al., Appl. Phys. Lett. 85, 5857 (2004).
  • [13] H. Tanuma and A. Sasaki, J. Plasma Fusion Res. 83, 679 (2007) ; H. Ohashi, H. Tanuma, S. Fujioka, H. Nishimura, A. Sasaki and K. Nishihara, J. Phys. Conf. 58, 235 (2007) ; H. Tanuma, H. Ohashi, S. Fujioka, H. Nishimura, A. Sasaki and K. Nishihara, J. Phys. Conf. 58, 231 (2007).
  • [14] D. Zaltzmann, Atomic Physics in Hot Plasmas (New York, Oxford University Press. 1998) Chap.4.
  • [15] A.F. Nikiforov, V.G. Novikov, V.B. Uvarov and A. Iacob, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation and Equation of State (Progress in Mathematical Physics, Birkhauser, 2005).
  • [16] T. Ando et al., Appl. Phys. Lett. 89, 151501 (2006).
  • [17] K. Nishihara, A. Sasaki, A. Sunahara and T. Nishikawa, “Conversion Efficiency of LPP source” (Chap. 11) of EUV Sources for Lithography, (SPIE press, edited by Vivek Bakshi, PM149, 2006) 339-371.

This paper may be cited as follows:

Atsushi SUNAHARA, Katsunobu NISHIHARA and Akira SASAKI, Plasma Fusion Res. 3, 043 (2008).