Plasma and Fusion Research

Volume 3, 036 (2008)

Regular Articles


LHD Bootstrap Current Coefficient Calculations with the VENUS+δ f code
Maxim Yu. ISAEV, Kiyomasa Y. WATANABE1), Masayuki YOKOYAMA1), Nobuyoshi OHYABU1), Craig D. BEIDLER2), Henning MAASSBERG2), Wilfred A. COOPER3), Trach-Minh TRAN3) and Mikhail I. MIKHAILOV
Russian Research Center “Kurchatov Institute”, Moscow, 123182, Russia
1)
National Institute for Fusion Science, Toki, 509-5292, Japan
2)
Max-Planck Institute für Plasma Physik, D-17491, Greifswald, Germany
3)
Centre de Recherches en Physique des Plasmas, CH-1015, Lausanne, Suisse
(Received 18 November 2007 / Accepted 16 April 2008 / Published 7 July 2008)

Abstract

Normalized bootstrap current coefficients are calculated for Large Helical Device (LHD, Japan) plasma configurations with different magnetic axis positions using the VENUS+δf code [Fusion Sci. Technol. 50, 440 (2006)]. The dependences on the different collisionality regimes (over the full experimental range of LHD plasma discharges) and the plasma radii are presented. The comparison of the VENUS+δf, SPBSC and DKES codes results is shown. The approach to the LHD experimental results is discussed. The bootstrap current effect on the iota = 1 islands is considered.


Keywords

heliotron, stellarator, magnetic configuration, neoclassical transport, bootstrap current, 3D numerical orbit, δf method

DOI: 10.1585/pfr.3.036


References

  • [1] O. Motojima et al., Nucl. Fusion 43, 1674 (2003).
  • [2] N. Ohyabu et al., Plasma Phys. Contr. Fusion 48, B383 (2006).
  • [3] K. Shaing and J. Callen, Phys. Fluids 26, 3315 (1983).
  • [4] K.Y. Watanabe et al., Nucl. Fusion 32, 1499 (1992).
  • [5] W.A. Cooper et al., Plasma Phys. Control Fusion 44, B357 (2002).
  • [6] W.I. Van Rij and S. Hirshman, Phys. Fluids B 1, 563 (1989).
  • [7] C.D. Beidler et al., Proc. 14th Int. Stellarator Workshop, Greifswald, Germany 2003.
  • [8] M.Yu. Isaev et al., Fusion Sci. Technol. 50, 440 (2006).
  • [9] K. Allmaier et al., CDROM with Proc. Of Joint Conf. of 17th Int. Toki Conf. on Physics of Flow and Turbulence in Plasmas and 16th Int. Stellarators/Heliotrons Workshop, 2007, P2-029. P.615.
  • [10] K.Y. Watanabe et al., Nucl. Fusion 35, 335 (1995).
  • [11] K.Y. Watanabe et al., J. Plasma Fusion Res. SERIES 5, 124 (2002).
  • [12] F. Hinton and R. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
  • [13] A. Boozer and H. Gardner, Phys. Fluids B 2, 2408 (1990).
  • [14] S. Hirshman and J. Whitson, Phys. Fluids 26, 3553 (1983).
  • [15] D. Anderson et al., J. Supercomput. Appl. 4, 34 (1990).
  • [16] A. Bergmann, A. Peeters and S. Pinches, Phys. Plasmas 8, 5192 (2001).
  • [17] A. Boozer and G. Kuo-Petravich, Phys. Fluids 24, 851 (1981).
  • [18] N. Ohyabu et al., Phys. Rev. Lett. 97, 055002 (2006).
  • [19] M. Mikhailov and V. Shafranov, Nucl. Fusion 30, 413 (1990).
  • [20] A. Wakasa et al., J. Plasma Fusion Res. SERIES 6, 203 (2004).
  • [21] S. Satake et al., Nucl. Fusion 45, 1362 (2005).
  • [22] E. Poli et al., Plasma Phys. Control Fusion 45, 71 (2003).


Publisher's Note

This article was originally published with a typographical error in the page 036-1. The article has been corrected as follows:
P.036-1, name of the 5th author: "Cleg D. BEIDLER" -> "Craig D. BEIDLER".


This paper may be cited as follows:

Maxim Yu. ISAEV, Kiyomasa Y. WATANABE, Masayuki YOKOYAMA, Nobuyoshi OHYABU, Craig D. BEIDLER, Henning MAASSBERG, Wilfred A. COOPER, Trach-Minh TRAN and Mikhail I. MIKHAILOV, Plasma Fusion Res. 3, 036 (2008).

(Revised 20 August 2008)