Plasma and Fusion Research

Volume 3, 034 (2008)

Regular Articles


High-Beta Axisymmetric Equilibria with Flow in Reduced Single-Fluid and Two-Fluid Models
Atsushi ITO, Jesús J. RAMOS1) and Noriyoshi NAKAJIMA
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
1)
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
(Received 27 February 2008 / Accepted 21 May 2008 / Published 23 June 2008)

Abstract

Reduced single-fluid and two-fluid equations for axisymmetric toroidal equilibria of high-beta plasmas with flow are derived by using asymptotic expansions in terms of the inverse aspect ratio. Two different orderings for the flow velocity, comparable to the poloidal Alfvén velocity and comparable to the poloidal sound velocity, are considered. For a poloidal-Alfvénic flow, the two-fluid equilibrium equations with hot ion effects are shown to have a singularity that is shifted by the gyroviscous cancellation from the Alfvén singularity found in singlefluid magnetohydrodynamics (MHD) when the poloidal flow velocity equals the poloidal Alfvén velocity. For a poloidal-sonic flow, a reduced single-fluid model is used to derive a set of equilibrium equations that includes higher-order terms. The singularity at a poloidal flow velocity equal to the poloidal sound velocity is recovered in the higher order equations.


Keywords

magnetohydrodynamics, plasma equilibrium with flow, two-fluid model, finite Larmor radius, tokamak

DOI: 10.1585/pfr.3.034


References

  • [1] A. Ishida, C.O. Harahap, L.C. Steinhauer and Y.-K.M. Peng, Phys. Plasmas 11, 5297 (2004).
  • [2] J.P. Goedbloed, Phys. Plasmas 11, L81 (2004).
  • [3] J. Shiraishi, S. Ohsaki and Z. Yoshida, Phys. Plasmas 12, 092308 (2005).
  • [4] A. Ito, J.J. Ramos and N. Nakajima, Phys. Plasmas 14, 062501 (2007).
  • [5] J.J. Ramos, Phys. Plasmas 12, 052102 (2005).
  • [6] J.J. Ramos, Phys. Plasmas 12, 112301 (2005).
  • [7] H.R. Strauss, Phys. Fluids 20, 1354 (1977).
  • [8] H.R. Strauss, Nucl. Fusion 23, 649 (1983).
  • [9] R.D. Hazeltine, M. Kotschenreuther and P.J. Morrison, Phys. Fluids 28, 2466 (1985).
  • [10] J.J. Ramos, Phys. Plasmas 14, 052506 (2007).
  • [11] E. Trussoni, C. Sauty and K. Tsinganos, in Solar and Astrophysical Magnetohydrodynamic Flows, edited by K.C. Tsinganos (Kluwer Academic, Dordrecht, 1996), p.383.
  • [12] K.C. Shaing, R.D. Hazeltine and H. Sanuki, Phys. Fluids B 4, 404 (1992).
  • [13] R. Betti and J.P. Freidberg, Phys. Plasmas 7, 2439 (2000).
  • [14] R.D. Hazeltine and J.D. Meiss, Plasma Confinement (Addison Wesley, Redwood City, CA, 1992).
  • [15] K.G. McClements and A. Thyagaraja, Mon. Not. R. Astron. Soc. 323, 733 (2001).
  • [16] N. Winsor, J.L. Johnson and J.M. Dawson, Phys. Fluids 11, 2448 (1968).
  • [17] E.K. Maschke and H.J. Perrin, Phys. Lett. A 102 , 106 (1984).
  • [18] E. Hameiri, Phys. Fluids 26, 230 (1983).



This paper may be cited as follows:

Atsushi ITO, Jesús J. RAMOS and Noriyoshi NAKAJIMA, Plasma Fusion Res. 3, 034 (2008).