[Table of Contents]

Plasma and Fusion Research

Volume 1, 028 (2006)

Regular Articles

Validity of Electron Temperature Measurement by Using Boltzmann Plot Method in Radio Frequency Inductive Discharge in the Atmospheric Pressure Range
Noriyasu OHNO, M. Abdur RAZZAK1), Hiroshi UKAI1), Shuichi TAKAMURA1) and Yoshihiko UESUGI2)
EcoTopia Science Institute, Nagoya University
Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University
Department of Electrical and Electronic Engineering, Graduate School of Natural Science, Kanazawa University
(Received 25 November 2005 / Accepted 5 April 2006 / Published 7 June 2006)


The validity of electron temperature measurement using the Boltzmann plot method was investigated in a radio frequency (rf) inductive discharge in the atmospheric pressure range. Since the Boltzmann plot method requires local thermal equilibrium (LTE), the parameter regions of electron temperature and electron density, in which the Boltzmann plot method is applicable, were analyzed in terms of a comparison of the spontaneous emission and collisional excitation to the excited states. It is observed that in our rf-inductive plasma near the atmospheric pressure range the Boltzmann plot method does not provide an exact measurement of electron temperature because of relatively low electron density, which does not satisfy the calculation criteria. An alternative method employing a combination of the Stark broadening measurement and the Saha-Boltzmann equation was demonstrated to more accurately determine the plasma parameters (electron temperature and electron density).


rf thermal plasma, spectroscopy, thermodynamic equilibrium, Boltzmann plot, atmospheric pressure discharge

DOI: 10.1585/pfr.1.028


  • [1] M. Amakawa, K. Adachi and S. Yasui, Trans. IEE, Japan 119-A, 357 (1999).
  • [2] R. Benocci, G. Bonizzoni and E. Sindoni ed., Proc. Intl. School Plasma Phys. (World Scientic Publishing Singapore, 1996).
  • [3] M. Sakano and M. Tanaka, J. Plasma Fusion Res. 76, 748 (2000).
  • [4] J.V.R. Heberlein, W.G. Melilli, S.V. Dighe and W.H. Reed, Proc. Workshop Industrial Applications, M. Boulos ed., Pugnochuso, Italy (1989) p.1.
  • [5] R.C. Eschenbach, Proc. Workshop Industrial Applications, M. Boulos ed., Pugnochuso, Italy (1989) p.127.
  • [6] S.L. Camacho, Proc. 1st Intl. EPRI Plasma Symp., EPRI Center for Materials Production (1990) Report No. CM90-9.
  • [7] E.L. Quiros, Brazilian J. Phys. 34, 1587 (2004).
  • [8] P.C. Kong and E. Pfender, Materials Processing Theory and Practice (Elsevier, Amsterdam, 1992).
  • [9] J. Reece Roth, Industrial Plasma EngineeringVolume 2: Applications to Nonthermal Plasma Processing (Institute of Physics Publishing, Bristol and Philadelphia, 2001).
  • [10] M. I. Boulos, P. Fauchais and E. Phender, Thermal Plasmas: Fundamentals and Applications (Plenum Press, New York, 1994).
  • [11] J. Reece Roth, Industrial Plasma EngineeringVolume 1: Principles (Institute of Physics Publishing, Bristol, 1995).
  • [12] M.A. Razzak, S. Takamura, Y. Uesugi and N. Ohno, J. Plasma Fusion Res. 81, 204 (2005).
  • [13] M.A. Razzak, S. Takamura and Y. Uesugi, J. Appl. Phys. 96, 4771 (2004).
  • [14] M.A. Razzak, K. Kondo, Y. Uesugi, N. Ohno and S. Takamura, J. Appl. Phys. 95, 427 (2004).
  • [15] M.A. Razzak, S. Takamura and Y. Uesugi, IEEE Trans. Plasma Sci. 33, 284 (2005).
  • [16] Y. Uesugi, M.A. Razzak, K. Kondo, Y. Kikuchi, S. Takamura, T. Imai and M. Toyoda, J. Plasma Fusion Res. 79, 1062 (2003).
  • [17] Y. Uesugi, H. Ukai, M.A. Razzak and S. Takamura, IEEJ Trans. Fundamentals Materials 125, 749 (2005).
  • [18] J. Kim, K.S. Nam and K.C. Jungling, IEEE Trans. Electron Devices 44, 1022 (1997).
  • [19] M. Tadokoro, A. Itoh, N. Nakano, Z.L. Petrovic and T. Makabe, IEEE Trans. Plasma Sci. 26, 1724 (1998).
  • [20] N.A. Gatsonis, L.T. Byrne, J.C. Zwahlen, E.J. Pencil and H. Kamhawi, IEEE Trans. Plasma Sci. 32, 2118 (2004).
  • [21] T. Trottenberg, B. Brede, D. Block and A. Piel, IEEE Trans. Plasma Sci. 32, 742 (2004).
  • [22] Y. Tanaka and T. Sakuta, Plasma Sources Sci. Technol. 12, 69 (2003).
  • [23] K.C. Paul, T. Ishigaki, J. Mostaghimi and T. Sakuta, J. Appl. Phys. 93, 8867 (2003).
  • [24] Y. Tanaka and T. Sakuta, J. Physics D: Appl. Phys. 35, 2149 (2002).
  • [25] T. Sakuta, K.C. Paul, M. Katsuki and T. Ishigaki, J. Appl. Phys. 85, 1372 (1999).
  • [26] T. Sakuta, N. Sakashita, T. Yoshida, T. Takashima and M. Miyamoto, IEEE Trans. Plasma Sci. 25, 1029 (1997).
  • [27] H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, 1997).
  • [28] G.V. Marr, Plasma Spectroscopy (Elsevier Publishing Company, Amsterdam, 1968).
  • [29] http://www.physics.nist.gov/cgi-bin/AtData/ines form (NIST Atomic Spectra Database Lines Form).
  • [30] Sobelman, L.A. Vainshtein and E.A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag Berlin Heidelberg, New York, 1979).
  • [31] S. Pellerin, K. Musiol, B. Pokrzywka and J. Chapelle, J. Phys. B: Atomic, Molecular, Optical Phys. 29, 3911 (1996).
  • [32] H.R. Griem, Spectral Line Broadening by Plasma (Academic Press, New York, 1974).
  • [33] P.S. Moussounda and P. Ranson, J. Phys. B: At. Mol. Phys. 20, 949 (1987).
  • [34] H.R. Griem, Plasma Spectroscopy (McGraw Hill, New York, 1964).

This paper may be cited as follows:

Noriyasu OHNO, M. Abdur RAZZAK, Hiroshi UKAI, Shuichi TAKAMURA and Yoshihiko UESUGI, Plasma Fusion Res. 1, 028 (2006).