22P53

He-SF₆混合ガスプラズマによりフッ素終端したSi基板上でのMoS₂合成 Synthesis of MoS₂ on F-terminated Si substrate by He-SF₆ mixed gas plasma

加藤 佑人, 荻野 明久 KATO Yuto, OGINO Akihisa

静岡大学大学院総合科学技術研究科 Graduate School of Integrated Science and Technology, Shizuoka University

1. 背景と目的

単層二硫化モリブデン(MoS2)は直接遷移型の バンド構造や高い電子移動度を有する半導体材 料で、電子デバイスなどへの応用が期待される。 デバイス応用において、結晶粒界のない単結晶の 利用が好ましいく、結晶粒界の形成を低減する必 要がある。結晶粒界の低減には、結晶成長の発端 となる核形成を制御し、MoS2ドメインサイズを拡 大することが有効と考えられるが、核形成密度は 基板表面における前駆体の拡散速度および滞在 時間に依存し、基板の温度や表面粗さ、ならびに 表面エネルギーなどの影響を受ける。本研究では、 He-SF₆プラズマによりフッ素終端したSi基板上で MoS₂をCVD合成し、基板表面に輸送される前駆 体をフッ化揮発させて核形成密度の低減を試み た。また、フッ素終端による前駆体(MoO3)の分解 促進効果を評価すため、核形成密度とドメインサ イズを評価した。

2. 実験方法

MoS₂のCVD合成では、He-SF₆混合ガス表面波プラズマによりフッ素終端したSi基板を用いた。このフッ素終端した基板と通常のSi基板をCVD反応炉内に併設し、CVD合成におけるフッ素終端の影響を比較した。CVD合成は、アルゴン(ガス圧500 Pa)で満たした反応炉内で前駆体となる酸化モリブデン(VI)MoO₃と硫黄を昇華させ、700 $^{\circ}$ Cに加熱した基板上にMoS₂を合成した。合成したMoS₂は電界放出型走査電子顕微鏡(FE-SEM)およびラマン分光法、XPSにより評価した。

3. 結果と考察

図1はプラズマ処理によりフッ素終端したSi基板上に、異なるCVD条件① \sim ③で合成した MoS_2 のFE-SEM観察結果を示す。いずれの基板においても2D- MoS_2 の特徴的な三角形状の結晶が確認された。また、フッ素終端していない成膜基板上で合成した MoS_2 の核密度は数十個/ μ m 2 に対し、フッ素終端した基板上では核密度が最大1/60まで低減し、ドメインサイズが増大した。これは合成初期の核形成時において、基板表面のフッ素が前駆体

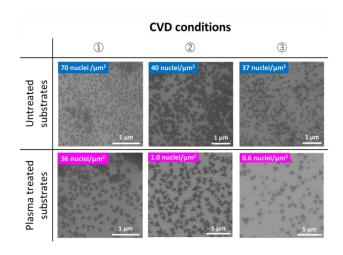


Fig.1 FE-SEM images of MoS₂ synthesized on plasma treated and untreated substrates.

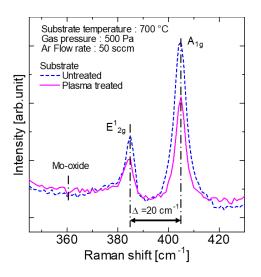


Fig.2 Raman spectra of MoS₂ synthesized on plasma treated and untreated substrates.

と反応しフッ化揮発することで、基板表面における前駆体の滞在時間が減少したためと思われる。 図2はCVD合成した成膜基板のラマンスペクトルを示す。図より、 MoS_2 特有の E^1_{2g} および A_{1g} モードが観測された。両ピークの波数差が $20~cm^{-1}$ であることから合成された MoS_2 は単層であると考えられる。