
対向爆縮コアの高速点火直接加熱効率の計測 Efficiency of the direct fast heating of counter-imploded core

北川米喜¹,森 芳孝¹,石井勝弘¹,花山良平¹,沖原伸一朗¹,有川安信²,安部勇輝^{3,2},三浦永祐⁴,尾崎 哲⁵,米田修⁶,須藤裕之⁶,梅谷有亮⁶,砂原淳⁷,城崎知至⁸,坂上仁志⁹,岩本晃史⁹,千徳靖彦²,中島 希²,坂田翔平²,松尾一輝²,S. Reza MIRFAYZI²,河仲準二²,藤岡慎介²,椿本孝治²,重森啓介²,山ノ井航平²,余語覚文²,中尾菜美²,浅野将惟²,白神宏之²,元廣友美²,日置辰視⁹,東博純¹⁰ ¹光産業創成大学院大学,²阪大レーザー,³阪大工,⁴産総研,⁵核融合研,⁶トヨタ自動車,⁷パデュー大 *CMUXE*,⁸広大工,⁹名大,¹⁰アイチシンクロトロン

予め対向爆縮したコアを超高強度レーザー (加熱レーザー) で高速直接加熱した時の加熱効率を調べた。"直接加熱"とは、ガイドコーンや外部場を付加せずに直接、加熱レーザーをコアに照射しようとするものの意である。効率 η は、コアの内部エネルギーの増加分を加熱レーザーの入力エネルギーで割ったもので定義する。阪大激光 XII レーザー12 ビームのうち 6 ビーム (グリーンレーザー出力 $1.6~{\rm kJ}$) を用いて CD 球殻ターゲットを爆縮し、楕円体高密度コアを形成した。コア内での DD 反応による $3.2{\rm MeV}$ プロトンのエネルギーシフトからコア面密度を、X 線ピンホール写真からコアサイズを見積もり、これらからコア密度が $2.8\pm0.7~{\rm g/cm^3}$, すなわち固体密度の $2.6\times$ と求めた.DD 反応の熱中性子発生量から、爆縮コアの温度は $600~{\rm eV}$ から $750~{\rm eV}$ の間であると評価された。

このコアに超高強度レーザーLFEX を 2つのモードで照射することを試みた。LFEX レーザーは 4 セグメントからなり、ここでは 2 セグメントを用いた low power と 4 セグメントを用いた high power の 2 通りで実験した。」一つは対向爆縮レーザーの軸と同軸に照射するもので、同軸モードとよぶ (図 (a))。もう一つはこの軸と直交する方向から照射するもので、直交モードと呼ぶ (図 (b))。後者では、CD 球殻の残骸が LFEX の照射の邪魔にならないように、予め球殻に 200μ m の穴を開けておく。LFEX 照射による X 線輻射強度の増加、熱中性子量の増加、高速電子流の吸収量の増加からそれぞれ独立に加熱効率 η を評価した。それらをまとめると同軸モードの low power の時 $0.8\% < \eta < 2.1\%$ 、high power の時 $0.4\% < \eta < 2.5\%$ と求まる。直交モードの low power の時 $2.6\% < \eta < 7\%$ 、high power の時 $1.5\% < \eta < 7.7\%$ である。後者の方が、効率が高いように見える。この手法を以前の激光 XII12 ビーム均一照射コアの Petawatt レーザーに用いたところ $12\% < \eta < 6\%$ となり直交モードの η に近いが、エラーバーが大きく、結論は今後の研究による。高エネルギーイオンによる加熱効果は測定できなかった。今後に譲る。

