QUESTにおけるトランジエントCHIシステムの設計改善 Improvement of design for Transient CHI system in QUEST

黒田賢剛¹⁾, Roger RAMAN²⁾, 長谷川真¹⁾, 恩地拓己¹⁾, 花田和明¹⁾, 小野雅之³⁾, Brian A. NELSON²⁾, Thomas JARBOE²⁾, John ROGERS²⁾, 池添竜也¹⁾, 出射浩¹⁾, 井戸毅¹⁾, 御手洗修⁴⁾, 永田正義⁵⁾, 川崎昌二¹⁾, 永田貴大¹⁾, 東島亜紀¹⁾, 島袋瞬¹⁾, 新谷一朗¹⁾, 関谷泉¹⁾, 中村一男¹⁾, 江尻晶⁶⁾, 高瀬雄一⁶⁾, 村上定義⁷⁾

Kengoh KURODA¹⁾, Roger RAMAN²⁾, Makoto HASEGAWA¹⁾, Takumi ONCHI¹⁾, Kazuaki HANADA¹⁾, Masayuki ONO³⁾, Brian A. NELSON²⁾, Thomas JARBOE²⁾, John ROGERS²⁾, Ryuya IKEZOE¹⁾, Hiroshi IDEI¹⁾, Takeshi IDO¹⁾, Osamu MITARAI⁴⁾, Masayoshi NAGATA⁵⁾, Shoji KAWASAKI¹⁾, Takahiro NAGATA¹⁾, Aki HIGASHIJIMA¹⁾, Shun SHIMABUKURO¹⁾, Ichiro NIIYA¹⁾, Izumi Sekiya¹⁾, Kazuo NAKAMURA¹⁾, Akira EJIRI⁶⁾, Yuichi TAKASE⁶⁾, Sadayoshi MURAKAMI⁷⁾

¹⁾九大, ²⁾UW, ³⁾PPPL, ⁴⁾先進核融合・物理教育研究所, ⁵⁾兵県大, ⁶⁾東大, ⁷⁾京大 ¹⁾Kyushu Univ., ²⁾UW, ³⁾PPPL, ⁴⁾Institute for Advanced Fusion and Physics Education, ⁵⁾Univ. of Hyogo, ⁶⁾Univ. of Tokyo, ⁷⁾Kyoto Univ.

これまで九州大学の球状トカマク装置QUESTでのトランジエント同軸へリシティ入射(T-CHI)による電流立ち上げ実験において、適切な磁束発展時に入射磁束条件と駆動電流(入射電流・トロイダル電流)値の明確な関係性が示され、入射磁束量 \mathfrak{P}_{inj} ~8 mWbにおいてトロイダル電流値 I_{tor} ~43 kAを達成した。結果は磁束が入射電流に対してforce-free ($j \times B$ ~0)を満たす条件で発展することを示唆しており、更なる高い入射磁束条件において I_{tor} ~100 kAの電流駆動が期待される。

図1に高磁東入射条件における立ち上げ評価の ための装置改造図を示す。入射磁束条件を上げ るためにはバイアス電極を下部コイルに近づ ける必要があり、電極及びそれを乗せる下部ダ イバータを図に示す構成に変更する。下部コイ ル(PF5-1)の電流値をI_{PF5-1}~ -3 kAとした場合の 入射磁束は、従来の電極構成において Ψ_{inj} ~3 mWb, CSコイルも補助的に使用した場合 Ψ_{ini} ~8 mWbであったのに対して、改造後はCSコイ ルを使用せずに Ψ_{ini} ~15 mWbの形成が可能に なる。入射領域における入射磁束量をコイル電 流値IPES-1により調整し、その他の周辺コイルを 磁束発展時の平衡磁場の形成のために用いて 様々な配位での磁束発展の評価を行い、同時に 電極構成の各種パラメーター(電極間距離、面積、 設置位置など)の最適値を決定する。

本改造においてはガス導入機構の改善が不可 欠となる。T-CHIでは入射領域に導入した高圧 ガスが電極の電圧印加により着火し、着火プラ ズマにより生じた大きな絶縁破壊が急速な入 射電流の上昇を促してBubble Burstと呼ばれる バブル状の磁束拡大が入射領域において生じ、 適切な磁束発展が達成される。しかし入射磁束 量の増加に伴いBubble Burst条件は厳しくなり、 プラズマ着火のために導入したガスは入射領 域よりも磁力線長の長い(着火条件の低い)容器 中域部領域で着火を引き起こす。この場合、十 分な入射電流が駆動せず、外周部のみ拡大した 磁束によりアブソーバー放電が生じてしまう。 本改造では図のように入射領域にガスシール ド板を設置して囲われた領域に滞留した高圧 ガスを着火させ、高密度の着火プラズマにより Bubble Burstを生じさせる。

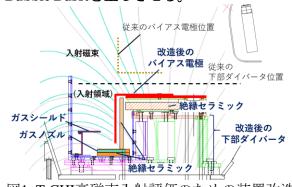


図1. T-CHI高磁束入射評価のための装置改造図