GAMMA 10/PDXにおけるメガワット級ECHによる間欠的熱負荷生成実験 Experiment of Generation of High Intermittent Heat Load using Megawatt Power ECH in GAMMA 10/PDX

南龍太郎, 假家強, 沼倉友晴, 北爪裕生, 大島伸也, イジョンミン, 遠藤洋一, 今井剛, 坂本瑞樹 MINAMI Ryutaro, KARIYA Tsuyoshi, NUMAKURA Tomoharu, KITAZUME Yuki, Oosima Sinya, LEE Jong Min, ENDO Yoichi, IMAI Tsuyoshi, SAKAMOTO Mizuki

筑波大プラ研 PRC, Univ. of Tsukuba

本研究は、核融合炉で大きな課題となっているELM時のダイバータ板への高熱負荷の緩和、熱流制御を目指し、ガンマ10ミラー装置において、ECHのパワー変調を行うことにより、ELM状の端損失を発生させ、その間欠的な熱流をELMによるものと模擬することで、ダイバータ模擬プラズマの、ELM様高熱流負荷による動的応答のデータを取得することを目的とする。

これまでに開発されたMW級ジャイロトロンを、既存のガンマ10西プラグ部のECHシステムへ適用するために、必要な伝送系の製作・組立を行なった。構築したMW級ジャイロトロンを用いた新しいECH伝送系のマイクロ波パワー伝送実験を実施し、マイクロ波パワー伝送実験を実施し、マイクロ波パワー伝送効率、放電やアウトガス等の大電力パワー伝送時の問題点などの基礎データを取得した。図1に、ガンマ10プラグ部及びエンド部の概略図を示す。プラグ部ECHの2枚のミラー・アンテナは既存のものを適用し、アンテナ直近までの伝送系を新たに構築した。MW級ジャイロトロンは、大実験室西棟の1階に設置してあるテスト・スタンドで開発を行なっている。

構築した新規伝送系は、MW級ジャイロトロン、位相整合器(MOU)、コルゲート導波管(WG)、マイターベンド(MB)、導波管切替器、真空排気用の排気ポートから構成される。コルゲート導波管の全長は25 m程度、マイターベンドは5つある。プラズマへの入射パワーは、ミラー・アンテナ直近における位置において、ダミー・ロードによる水負荷の温度上昇により測定している。

これまでにMW級ジャイロトロン単体の出力 測定において、28 GHz 1.65 MW の出力が達成 されており、今回のECHシステムへの適用によ り、プラズマ実験において、2倍程度のECHパ ワー源の増大が期待出来る事が分かった。将来、 ELM模擬に向けた物理モデルへ外挿できるまでのデータ取得を目指す。

本講演では、MWレベルの実験により、ELM 状の熱負荷を発生させて、そのプラズマ流の特 性を測定した初期実験について報告する。

本研究は、NIFSの双方向型共同研究 (NIFS20KUGM162, NIFS20KUGM160, NIFS20KUGM148)の助成を受けたものである。

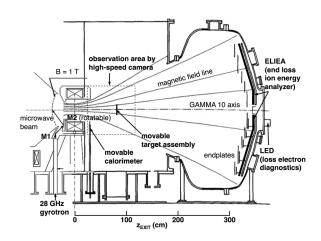


図1 ガンマ10プラグ部及びエンド部の断面 概略図。プラグ部 ECH のパワー変調によるプラズマ応答を、端損失電子、端損失イオンを計測できる静電エネルギー型分析器(LED, ELIEA)を用いて解析する。熱流は、可動型カロリメーターにより計測する。