QUESTにおける28GHz電子サイクロトロン高調波

電流立ち上げ時の磁場配位発展

Evolving magnetic-configurations during current ramp-up through 28 GHz harmonic electron cyclotron heating in the QUEST spherical tokamak

木谷彰宏¹, 恩地拓己², 花田和明², 小島信一郎¹, 工藤倫大¹, 福山雅治¹, 加藤凌哉¹, 村上貴洋¹, 張逸凡¹, 黒田賢剛², 池添竜也², 長谷川真², 中村一男², 井戸毅², 出射浩²

九大総理工¹, 九大応力研²

Akihiro KIDANI¹, Takumi ONCHI², Kazuaki HANADA², Shinichiro KOJIMA¹, Michihiro KUDO¹, Masaharu FUKUYAMA¹, Ryoya KATO¹, Takahiro MURAKAMI¹, Yifan ZHANG¹, Kengoh KURODA², Ryuya IKEZOE², Makoto HASEGAWA², Kazuo NAKAMURA², Takeshi IDO², Hiroshi IDEI² IGSES, Kyushu Univ. ¹, RIAM, Kyushu Univ. ²

球状トカマク装置QUESTでは28 GHz高周波 の局所加熱による非誘導プラズマ立ち上げ、定 常維持を目指し、ジャイロトロンを用いた電子 サイクロトロン加熱電流駆動実験が行われて いる[1]. 球状トカマクではトロイダル磁場の勾 配が強いため、複数の高調波共鳴層が共存する. また,28GHz高周波の入射角度によって加熱時 のプラズマ応答が異なる. 高調波共鳴加熱によ る電流駆動効果を高めるためには、プラズマの 形状及び位置を特定し、垂直磁場コイル電流値 などを調整しながら高周波ビームの入射角度 を制御することが重要である.本研究の目的は, 28 GHz電子サイクロトロン加熱電流駆動実験 において, 磁気計測データを基に最外殻磁気面 を再構成し、電流立ち上げ過程における磁場配 位発展の理解を進めることである.

磁気面再構成の手法として、フィラメント電流近似法[2,3]を採用した.この手法は、プラズマ電流を数本の未知円環電流要素、即ちフィラメント電流群として近似し、それらの作る磁束が磁気計測結果に適合するように最小二乗法で電流値を算出してポロイダル磁束の等高線を描く.本研究では、最大75本(真空容器内壁上 67本、高温壁上8本)のフラックスループによってポロイダル磁束を計測した.また、フィラメントの数は6本としている.

開発した計算コードによって磁気面の時間 発展を可視化し、プラズマ位置・形状の調査を 進めている. 28 GHz高周波斜め入射及び準垂直 入射時の典型的な磁気面再構成結果をそれぞ れ図1(a)、(b)に示す.計算には真空容器内壁上 にあるフラックスループ62本分のデータを利 用した.斜め入射では第二-第四高調波共鳴層 位置よりも外側の $R \approx 0.9$ mまで閉磁気面が広が るが、準垂直入射では第四高調波共鳴層位置(R= 0.64 m)よりも内側領域に閉磁気面が存在す る.このように高周波ビーム入射角度によって 閉磁気面の位置・形状が異なるが、プラズマの 性質にも違いが生まれる. 斜め入射時にプラズ マ電流は50 kA以上でもバルク電子温度は $T_e =$ 10 eV程度にとどまる. 一方,準垂直入射時で はプラズマ電流は30 kA以下だが,コア部で $T_e =$ 200-400 eVまで加熱される. 講演では複数のト カマク放電パターンで得た磁気計測データに よる磁気面解析結果を示し,考察を述べる.

図1(a) 斜め入射ショット#43945(t = 2.84 s), (b) 準垂直入射ショット#44074(t = 2.80 s)の磁気面再 構成結果.赤破線は高調波共鳴層の位置を示して いる.

参考文献

- [1] H. Idei *et al.*, J. Plasma Fusion Res. Vol.96, No.6 309-316 (2020).
- [2] D.W. Swain, G.H. Neilson., Nucl. Fusion **22**, 1015 (1982).
- [3] **辻俊二** 他, JAERI-M86-006 (1986).