2種イオンクーロン結晶のMDシミュレーション **MD Simulation of two-species ion Coulomb crystals**

角田匠,竹川拓希,工藤海也,後藤泰輔,荒巻光利 TSUNODA Takumi, TAKEGAWA Hiroki, KUDO Hiroya, GOTO Taisuke, ARAMAKI Mitsutoshi

日大生産工 Nihon Univ

1. はじめに

プラズマ中の荷電粒子の間にはクーロン相互作用 が働く。次の式で定義されるクーロン結合係数Γがク ーロン相互作用の影響の大きさの目安を与える。

平均クーロンポテンシャルエネルギー

Γが1よりも大きくなればクーロン相互作用がプラズ マに大きく影響を与え、このようなプラズマを強結合 プラズマといい、Γが1よりも十分小さければ弱結合 プラズマと呼ばれる。弱結合プラズマは気体の状態で あり強結合プラズマは液体の状態の性質を示す。Γが 約170を超えると強結合プラズマはクーロン結晶と なることが知られている。

イオントラップは、閉じ込めたイオンをレーザー冷 却することで弱結合プラズマからクーロン結晶にい たる広い範囲の状態のプラズマを生成することがで き、精密分光や量子演算などの研究で用いられる。

我々は、2種類のイオンを個別に温度制御し、冷却 過程の違いが最終的な結晶構造にどのような影響を 与えるかを研究する目的でCa、Sr混合プラズマ実験を 進めている。今年度より、実験的研究に加えて、2種 イオンクーロン結晶の構造を評価するためのMDシ ミュレーションの開発を始めている。

本講演では、シミュレーションコードの開発状況と、 初期の解析結果について報告する。

2. MDシミュレーション

荷電粒子が受けるクーロン相互作用と電場から受ける力を計算し、イオントラップ内でのイオンの運動 を明らかにする。

クーロン相互作用の計算は、x 方向の場合、次式で 表せる。

$$F_x = \frac{q^2}{4\pi\varepsilon_0} \frac{1}{r^2} \frac{r_x}{r}$$

y方向、z方向も同様に表せる。

イオントラップ内のポテンシャルは、z軸上に近い x-y平面上のポテンシャル $\phi_{RF}(x,y,t)$ とz軸の中心 付近のポテンシャル $\phi_{END}(x,y,z)$ は次式で表せる。

$$\phi_{RF}(x, y, t) = \frac{V_{RF} \cos \Omega t + \kappa V_{DC}}{r_0^2} (x^2 - y^2)$$

$$\phi_{END}(x, y, z) = \frac{\kappa V_{END}}{z_0^2} \left[z^2 - \frac{1}{2} (x^2 + y^2) \right]$$

κは幾何因子と呼ばれ、イオントラップの構造によ って決まる。

クーロン相互作用と電場から受ける力を考慮した 運動方程式から粒子軌道を計算する。その計算過程で 質量を Ca と Sr に場合分けし、2種イオンの運動を 明らかにした。

3. 実行結果

2種イオンを冷却した結果を Fig.1 に示す。プログ ラムでは、粒子数各 50 個、高周波電極の周波数を 3.2MHz、 動作電圧 Vrf=230V、エンドキャップ電極 の動作電圧 Vend=60V として計算し、トラップパラメ ータは、Ca:a値=0、q値=0.2815、Sr:a値=0、q値 = 0.1280 である。

Fig.1 では、青色で示した Ca 粒子の周りを橙色で示 された Sr 粒子が囲う様子が確認できる。これは、イ オントラップが質量に対して感度を持っているため に起こる現象である。次式は時間平均したときの x 方 向に作る実効的なポテンシャルの深さD_xである。

$$\overline{D_x} = \frac{qV_{RF}^2}{mr_0^2 \Omega^2}$$

ポテンシャルの深さ $\overline{D_x}$ より、質量の軽い Ca は Sr より強い力を受け、中心に集まる。

Fig.12種イオンの冷却結果(a)x-y 平面、(b)z-x 平面