Simulations of energetic particle driven instabilities in the quasi-axisymmetric stellarator

WANG Hao¹,藤堂 泰¹,HUANG Jie¹,鈴木康浩¹,清水昭博¹,小川国大¹, WANG Xianqu²,CFQS Team^{1,2}

Hao WANG¹, Yasushi TODO¹, Jie HUANG¹, Yasuhiro SUZUKI¹, Akihiro SHIMIZU¹, Kunihiro OGAWA¹, Xianqu WANG², CFQS Team^{1,2}

> 核融合研¹,西南交通大学(中国)² NIFS¹,SWJTU(China)²

The simulations of energetic particle (EP) driven instabilities in a quasi-axisymmetric (QA) device named CFQS are conducted using MEGA code for the first time. Based on the three-dimensional CFQS equilibrium, m/n = 3/1 global Alfvén eigenmode (GAE) is excited in the case with islands, and m/n = 5/2 toroidal Alfvén eigenmode (TAE) is excited in the case without island. Strong mode coupling is found because of very low number of field periods N_{fp} .

In the present work, the major radius is 1m on average, the magnetic field strength on the magnetic axis is 1T on average, N_{fp} is 2, the plasma beta value is 1%, the plasma density on the axis is $1.0 \times 10^{19}/m^3$, the energy of neutral beam is 40 keV, and a slowing-down distribution of EP is assumed. Two different equilibria with and without magnetic islands are considered. All the above parameters are the same as CFQS physics design parameters. An instability is excited in the case with islands. The m/n = 3/1 harmonics is dominant, and the mode is global. The mode frequency is close to GAE frequency $(n - m\iota) \times \omega_A/(2\pi) = 78kHz$, where $\omega_A = 6.147 \times 10^6 rad/s$, n = 1, m = 3, $\iota = 0.36$. The mode growth rate increases with EP pressure, but mode frequency does not depend on the EP pressure or EP velocity, that means the mode is eigenmode. Based on the above properties, the mode is identified as GAE. Some other components $n = n_0 + iN_{fp}$ (where n = -1 and 3) are also strong as shown in Fig. 1, where $n_0 = 1$, *i* is an arbitrary integer (i = -1 and 1). Strong mode coupling happens because of very small N_{fp} value, which is consistent with theoretical prediction. Another instability is excited in the case without island. The m/n = 5/2 harmonics is dominant. The mode frequency 125kHz is very close to the TAE gap constituted by m/n = 5/2 and 6/2 harmonics. The mode growth rate increases with EP pressure, but mode frequency does not depend on it. Then, the mode is identified as TAE. Some other components $n = n_0 + iN_{fp}$ (where n = -2, 0, and 4) are also strong as shown in Fig. 2, where $n_0 = 2$, *i* is an arbitrary integer (i = -2, -1, and 1). Strong mode coupling happens because of very small N_{fp} value, which is consistent with theoretical prediction.

Fig. 1: Mode profile of GAE.

Fig. 2: Mode profile of TAE.