QUESTにおける28GHz電子サイクロトロン 高調波電流立ち上げプラズマへのオーミック追加熱

Auxiliary ohmic-heating during current ramp-up through 28 GHz harmonic electron cyclotron heating on the QUEST spherical tokamak

恩地拓己¹, 出射浩¹, 福山雅治², 中村一男¹, 張逸凡², 池添竜也¹, 加藤凌哉², 工藤倫大², 木谷彰宏², 小島信一郎², 村上貴洋², 江尻晶³, 大澤佑規³, PENG Yi ³, 黒田賢剛¹, 長谷川真¹, 井戸毅¹, 花田和明¹, 假家強⁴, 福山淳⁵, 小野雅之⁶

ONCHI Takumi¹, IDEI Hiroshi¹, FUKUYAMA Masaharu², NAKAMURA Kazuo¹, ZHANG Yifan², IKEZOE Ryuya¹ et al.

1九大応力研,2九大総理工,3東大新領域,4筑波大プラセ,5京大,6PPPL

¹RIAM, Kyushu Univ., ²IGSES, Kyushu Univ., ³Dept. Complexity Science and Eng. The Univ. of Tokyo, ⁴PRC, Univ. of Tsukuba, ⁵Kyoto Univ, ⁶PPPL

球状トカマクQUESTにおいて28 GHz高周波入射による電子サイクロトロン (EC) 高調波加熱が進められている。高周波ビーム斜め入射時に、高速電子の寄与によりEC加熱単独で $I_p > 70$ kAのプラズマ電流が立ち上がるが、オーム加熱を追加することで100 kAまで上昇する。

図1に横軸を印可した周回電圧 V_{loop} ,縦軸を到達した I_p 値としたプロットを示す。約1秒の放電の場合, $V_{loop} < 0.1$ Vで非誘導に立ち上げた場合は到達 I_p が70 kA程度にとどまるため,より高い I_p を流すには周回電圧印加が効果的である。 $I_p \approx 50$ kAまで非誘導で立ち上げたトカマクプラズマに $V_{loop} < 0.5$ Vのオーム追加熱を行うと, $I_p = 90-100$ kAまで電流が上昇する。バルク電子は $T_e < 30$ eVまでしか加熱されておらず,高速電子の寄与が大きいと考えられる。

一方、高周波ビーム準垂直入射時はバルク電子が加熱される。図2に示す放電波形のように、 $I_p \approx 20 \, \mathrm{kA}$ まで非誘導で立ち上げた後、 $V_{loop} < 0.2 \, \mathrm{V}$ 程度の周回電圧を印加すると電子温度が上昇する。図2の $t = 2.7 \, \mathrm{s}$ では $T_e > 800 \, \mathrm{eV}$ を観測した。このようにビーム入射角によってプラズマの振る舞いは異なる。講演ではそれぞれの場合の

追加熱効果について考察する.

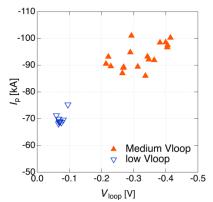


図1. 高周波斜め入射時の周回電圧対プラズマ電流のプロット. ▽は非誘導電流立ち上げ時, ▲はオーム追加熱時のデータ.

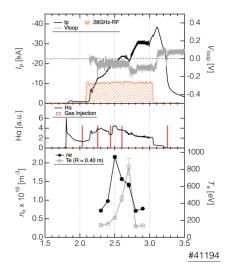


図2. 高周波準垂直入射時に非誘導電流立ち上 げしたプラズマへのオーム追加熱を示した波 形