04Aa05

衝突合体生成FRCにおけるボロメータイメージング計測 Bolometric Imaging Measurement in a Collisional Merging Formation of FRC

星野ともか, 巽ありさ, 三浦圭介, 山中拓人, 高橋努, 浅井朋彦 Tomoka HOSHINO, Arisa TATSUMI, Keisuke MIURA, Takuto YAMANAKA, Tsutomu TAKAHASHI, Tomohiko ASAI

日大理工

Nihon Univ.

1. 研究背景・目的

磁場反転配位 (FRC) プラズマは,反磁性電流による ポロイダル磁場のみで閉じ込め、プラズマの圧力勾配 を維持できれば配位が定常的に維持できる可能性を持 つ. 日本大学・FAT-CM装置 (Fig.1) で行われているFRC プラズマの衝突合体生成実験では、アルヴェン速度を 超える速度で衝突・合体し、FRCプラズマが生成される。 その過程で生じる磁気再結合や衝撃波によって、運動 エネルギーが熱エネルギーに変換されると考えられて いる.しかし未解明な点が多く,加熱後の緩和過程につ いてより詳しい情報を得ることが望まれる. これらの 情報を得るため、真空容器内部に多チャンネルボロメ ータを設置、得られた信号を画像再構成することで、 FRCプラズマ断面のイメージング計測を行う.またこれ らの結果を計測波長領域の異なるトモグラフィーカメ ラによる再構成像や、レーザー干渉計による電子密度 計測と比較することで、電子温度の空間分布やその時 間発展などの情報を得ることを目指す.

2. 計測原理

ボロメータによって計測される放射光強度は、測定 光路に沿った線積分値で近似できる.これをFRCプラズ マの発光の空間的局所値に変換する.計測から得られ るデータ \hat{I} は16点 (=チャンネル数)であり、この情報か ら、逐次的近似法によりプラズマの分布fに近い分布 \hat{f} を求める.測定対象のFRCプラズマからの放射光は、連 続スペクトルである制動放射光が支配的であると考え られ、その強度 $I(\lambda)$ は(1)式で記述される[1].

$$I(\lambda)d\lambda \propto n_e^2 Z_{eff} T_e^{-\frac{1}{2}} \exp\left(-\frac{hc}{\lambda T_e}\right) \bar{g}_s d\lambda$$
 (1)

ここで、 n_e は電子密度、 Z_{eff} は実効電荷数、 T_e は電子温度、hはプランク定数、cは光速、 \bar{g}_s はガウント因子を表す. (1)式より計算された、制動放射光強度分布の電子温度 T_e 依存性を、Fig.2に示す[2]. FAT-CM装置において衝突合体生成されるFRCプラズマの電子温度は50 eV

程度であることから,ボロメータにより計測される制 動放射光は真空紫外領域(青)が支配的であると予想さ れる.ボロメータの感度領域のうち,高強度の線スペク トル放射の存在が懸念される短波長領域については, 真空紫外分光器による計測を予定している.

3. ボロメータ計測

ボロメータは閉じ込め領域のz = 0.3 mの位置に設置 され、Fig.3に示すように約50°の視野角で、FRCプラズ マのトロイダル断面を計測する. 真空容器内に設置さ れ波長感度領域は数nm~1100nmであり、衝突合体過 程 (20-30 µs) に対して十分速い応答速度(0.5µs)を持つ ことから、衝突合体および緩和のプロセスの観測が期 待できる.

実験データより得られ た,放射光強度から放射 係数の径方向分布を導出 する.また,近接して設置 (z = -0.3 m)されてい る,計測波長が550nm付 近(Fig.2:ピンク)のトモ グラフィーカメラによる 観測結果と比較し,電子 温度分布およびその時間 発展を評価する.

4. 参考文献

- [1]T.Asai, T.Takahashi et al., "Tomographic reconstruction of deformed internal structure of a field-reversed configuration", Phys. Plasmas, **13**, 072508 (2006)
- [2] T. Takahashi, et al., "Multichannel optical diagnostic system for field-reversed configuration plasmas", Rev. Sci. Instrum. 75, 5205 (2004)