タングステン-10%レニウム合金における重水素透過に関する研究 Deuterium gas driven permeation behavior for W-10%Re alloy

小山 優輝¹⁾、小池 彩華²⁾、和田 拓郎²⁾、山﨑 翔太²⁾、孫 飛²⁾、大矢 恭久²⁾ KOYAMA Yuki¹⁾, KOIKE Ayaka²⁾, WADA Takuro²⁾, YAMAZAKI Shota²⁾, SUN Fei¹⁾, OYA Yasuhisa¹⁾

1)静大理、2)静大院

1) Fac. of Sci., Shizuoka Univ., 2) Grad. School of Integrated Sci. and Tech., Shizuoka Univ.

1. Introduction

For safety operation for fusion reactor, evaluation of hydrogen isotope permeation behavior in tungsten (W) is required. In the fusion environment, W will be exposed by energetic hydrogen isotopes and neutrons, leading to the formation of W-Re alloy by nuclear reaction. As the neutron fluence is increased, Re ceoncentration will be increased up to several % in ITER condition. Therefore, the contribution of Re on hydrogen permeation is quite important. In this study, W-10%Re has adopted and their deuterium (D) permeation behavior was evaluated.

2. Experiment

Polycrystalline W-10%Re samples (6mm^o,0.5mm^t) purchased from A.L.M.T. Co. Ltd were used. After the pretreatment by annealing, the sample was sandwiched between gold coated metal O-ring that sealed in sample holder. The sample holder introduced in gas driven permeation (GDP) device and introduce D₂ gas into upstream side regulated by variable leak valve (V.L.V). D permeation rate was measured as a function of gas pressure at 20 - 80 kPa and temperature between 883 and 983 K. The vacuum at the downstream side was maintained at \sim 10⁻⁷ Pa by a turbomolecular pump (TMP). D permeation was quantified by a quadrupole mass spectrometer (QMS), which was calubirated by a standard D₂ leak bottles. Permeability was calculated by lag-time method.

3. Results and discussion

Fig. 1 shows the temperature dependence of D permeability for W-10%Re and W. The permeability of D for W-10%Re was larger than that for W at higher temperature above 933 K. It was reported that Re was precipitated at the defects in W-Re alloy, which would enhance the D permeability at higher temperature.

Pressure dependence of D permeability for W-10%Re was also measured. Based on the

experimental results, the slope of permeability on the D_2 pressure at upstream side for W-10%Re was estimated to be 0.79, which was higher than that for W, namely 0.5, indicating that D permeation behavior for W-10%Re was controlled by surface recombination.[3]. In this presentation, more detail experimental results related to D transport in W-10%Re will be discussed.

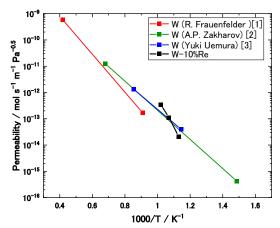


Fig. 1 Temperature dependence of D permeability for W-10%Re and W.

References

- [1] R. Frauenfelder, J. Chem. Phys., 48 (1968) 3955.
- [2] A.P. Zakharov, et al., Soviet Mater. Sci., 9 (1973) 149.
- [3] Yuki Uemura, et al., J. Nucl. Mater. 490 (2017) 242.