
03Cp01

トカマクプラズマにおける非線形周波数チャーピングの物理
Physics of Nonlinear Frequency Chirping in a Tokamak Plasma

ビアワーゲ・アンドレアス 1，ホワイト・ロスコー 2

Andreas Bierwage1 and Roscoe B. White2

量子科学技術研究開発機構 六ヶ所核融合研究所 1，プリンストンプラズマ物理学研究所 2

National Institutes of Quantum and Radiological Science and Technology (QST),
Rokkasho Fusion Institute, Aomori, Japan1,

Princeton Plasma Physics Laboratory (PPPL), Princeton NJ, USA2

In axisymmetric tokamak plasmas, collisionless

long-range transport of energetic ions interacting

with waves can occur due to (i) crossing the passing-

trapped boundary, (ii) resonance overlap, and (iii)

phase space vortex propagation. The latter is often

observed in the form of rapid frequency chirping,

and it is the subject of the present numerical study.

We employ the Hamiltonian guiding center (GC)

orbit following code Orbit [1] with a reduced δf

model for nonlinear interactions between fast ions

and ideal electromagnetic modes in toroidal geome-

try [2]. This model strikes a compromise between

the highly simpli�ed 1-D bump-on-tail paradigm

[3] and the complete 4-D problem tackled by self-

consistent gyrokinetic or hybrid models [4]: While

simulation particles in Orbit are pushed in realistic

magnetic geometry with all relevant aspects of GC

motion retained*1, the �eld dynamics are reduced to

the evolution of an amplitude A(t) and phase ϕ(t),

subject to constant damping γd and initially uniform

phase space gradients. Fixing the radial pro�le Φ̂(r)

of the �uctuating �eld prevents spatial corrugation,

making the model resilient to particle noise and re-

ducing the dynamic complexity of the system. The

result is a computationally e�cient and numerically

accurate model, that has the potential to enhance

our qualitative understanding of frequency chirping

and particle transport in realistic geometry, albeit

quantitative predictions remain out of scope.*2

*1 Polarization drift and ponderomotive force are ignored.

All other aspects of GC motion are retained to the ex-

tent permitted by a Hamiltonian formulation in Boozer

coordinates (which requires neglecting the �eld compo-

nent δ in Eq. (2.26) of Ref. [5] arising from the coordi-

nates' nonorthogonality). The model is appropriate for

fast ions interacting with shear Alfvén modes.

The concrete motivation for the present study was

the observation of rapid �eld amplitude pulsations

and phase jumps in experiments and simulations

(e.g., see Ref. [6] for JT-60U). This phenomenon is

seen whenever there are multiple chirps occurring at

the same time at di�erent frequencies. The pulsa-

tions and phase jumps can be readily explained by

the beating of multiple modes [6]. At �rst glance, it

might be surprising that such beating can be repro-

duced with reduced models that evolve only a sin-

gle mode, such as the well-studied 1-D bump-on-tail

paradigm [3] and recent Orbit simulations for toka-

mamk geometry [7]. The situation becomes clearer

if one distinguishes between the �eld mode, which,

in our simulations, takes the form

Φ(r, ϑ, ζ, t) = A(t)Φ̂(r) sin(nζ −mϑ− ω0t− ϕ(t)),

and phase space modes � a.k.a. holes and clumps

� of the combined �eld+particle system.*3 As an

analogy, one might think of the holes and clumps

as di�erent players in an orchestra, whose collective

music is recorded on a single sound track Φ(t).

*2 Quantitative predictions may become feasible through

systematic extensions; e.g., independent modelets at

di�erent radii, and a damping rate γd(r, ω,A) that de-

pends on radius, frequency and amplitude, mimicking

the e�ect of continuum damping and �uid nonlineari-

ties. Collisions and sources also need to be considered.
*3 When the �eld mode appears, it creates radially ex-

tended modulations of phase space density (primor-

dial hole-clump pairs) that undergo poloidal shear-

ing. Around a resonance (dashed line in Fig. 1(c)),

clumps/holes move down/up-hill, and their frequencies

shift up/down. When the �eld mode is damped, holes

& clumps can escape and form independent waves �

phase space modes � whose oscillations are superim-

posed in the velocity-space integrals governing the evo-

lution of A(t) and ϕ(t) [2]. This temporal interference

is observed as amplitude modulations & phase jumps.



We may then ask about the resulting feedback:

How is the performance of each player perturbed by

the signals made by other players? This question

arises from the anticipation that the robustness of

coherent phase space structures depends on the local

quality of resonant particle trapping in the �uctuat-

ing �eld Φ(r, ϑ, ζ, t). While the contributions of all

players are superimposed linearly when they drive

the �eld �uctuations, we expect the feedback to be

nonlinear when dynamic time scales overlap: phase

space shearing & wave breaking, amplitude & phase

modulations, �eld damping ... Thus motivated, our

recent studies focused on question like these:

1. What do the �eld mode dynamics look like

on di�erent time scales? Alfvén wave spectrograms

are usually computed with t windows as long as a

millisecond, since FFT is of little use on shorter

scales. Here, we employ the DMUSIC algorithm

[8] in order to visualize spectral dynamics down to

the 0.1ms scale of the above-mentioned amplitude

modulations. Our hope is that high-resolution spec-

trograms as in Fig. 1(b) will enable us to anticipate

the underlying dynamics without having to compute

phase space plots, like the δf contours in Fig. 1(c,d).

2. What form does the start of a chirp take? Near

marginal stability, collisionless chirps were predicted

to pitch-fork (ϕ̇ ∝
√
t [3]) in the adiabatic regime,

whose onset time (if any) may vary from case to case.

Our paper will discuss several di�erent examples for

realistic tokamak geometry. The case in Fig. 1(b)

has a time-dependence of the form ϕ̇ ∝ tanh(t),

indicating a long-lasting nonadiabatic phase [9, 10]

dominated by wave breaking as seen in Fig. 1(c).

3. What causes the emission of solitary phase

space vortices? Fig. 1(b) shows a strong upward

chirp that is launched around t ≈ 1.5ms and con-

nected with the emission of the massive solitary

clump seen at the top of Fig. 1(d). We are inves-

tigating how the solitary clump detaches from the

wave-breaking domain and drifts outward.

In the present case, the emission of solitary clumps

seems to be of probabilistic nature and ultimately

connected to how they are fueled by clumplets that

are scraped o� by the holes uphill and travel down-

hill through the wave breaking domain as indicated

schematically by the meandering lines in Fig. 1(d).

Fig. 1: DMUSIC spectrogram & snapshots of prop-

agating phase space modes (a.k.a. holes & clumps).

Clarifying this process may yield useful insight into

the transport of fast ions during Alfvénic chirping.*4
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*4 The radially propagating micro-structures seen in re-

cent Orbit simulations (Fig. 11 in Ref. [7]) may not

contribute to transport. They seem to be the result of

phase mixing of density modulations whose origin may

be partly physical (incomplete mode-orbit overlap due

to magnetic drifts) and partly numerical (curable with a

quiet start accounting for drifts and mirror forces [11]).

Note also that Orbit is not a conservative solver; the

Liouville theorem may be violated on multi-ms scales.


