03Ba01

プラズマ切断トーチ内外におけるプラズマジェットの 圧縮性電磁熱流体解析とハフニウム陰極蒸気の輸送解析 Numerical Compressible Thermofluid Simulation on a Plasma Jet and Transport of Hf Vapor inside and outside Plasma Cutting Torch

三田村直紀*1),田中康規1),中野裕介1),石島達夫1),山口義博2),高田伸浩2) Naoki Mitamura*1), Yasunori Tanaka1), Yusuke Nakano1), Yoshihiro Yamaguchi 2), et al. 1)金沢大自然科学研究科,2)コマツ産機(株) 1) Kanazawa University,2) Komatsu Industries Corp.

1. まえがき

プラズマアーク切断(PAC)は、大電流アークプラ ズマによる加熱と被切断物の酸化燃焼反応による燃 焼熱とにより被切断物を局所的に溶融させ、溶断す る熱切断法の一つである^[1]。PACの課題に、陰極や ノズルの長寿命化が挙げられる。アーク陰極点への 高い熱流入により、陰極は溶融・蒸発し損耗する。 陰極損耗低減によるトーチの長寿命化のために、ト ーチ内における陰極の蒸発とその蒸気輸送を把握す る必要がある。トーチ外におけるプラズマジェット は超音速流・遷音速流であり、圧縮性を考慮して解 析する必要がある。本報告では、トーチ内外におけ るアークプラズマの温度場、陰極材料の蒸発とその 蒸気質量分率を圧縮性電磁熱流体解析により求めた。

2. 数値解析モデルおよび解析条件

本数値解析では流体解析ソフト ANSYS FLUENT ver. 15.0 を使用した。計算空間はハフニウム(Hf)陰 極,銅電極ホルダ,銅ノズル,気体領域とし,(i)定 常状態,(ii)局所熱平衡状態(LTE),(iii)光学的に薄い, (iv)円筒軸対称構造を有する、と仮定した。支配方程 式として、 プラズマ・ガス部に対する質量・運動量・ エネルギーの各保存式, 電極からの Hf 蒸気の輸送 式, 電極・ノズルなどの固体内エネルギー保存則, 静電場に対する電流連続の式、ベクトルポテンシャ ルのポアソン方程式を考慮した。乱流モデルには SST k-ω モデルを使用した。陰極表面ではイオン表 面再結合による加熱,熱電子放出・熱放射・Hf 蒸発 によるパワーロスを考慮した。これらの方程式を, 密度ベースソルバーを用いて解いた。Fig.1に、本検 討で使用したプラズマ切断トーチの解析空間を示す。 メインガス,アシストガスは酸素を使用し,旋回ガ スとして供給する。電流値は150Aとした。プラズ マ切断トーチ下 z=25.6 mm の境界部分に, 直径 3.0 mm の穴あき鋼板を仮想的に配置した。

3. 数值解析結果

図2に、プラズマ切断トーチ内外における温度分 布を示す。ノズルオリフィス部(z=11-14mm)では、 ガス温度が30000Kを超えた。これは、ノズルやメ インガスによってアーク柱の周囲が冷却され、熱ピ ンチを起こし、局所的なジュール加熱の影響が大き くなったためと考えられる。一方で、Hf 陰極前(z= 5.7mm)では温度が低下した。これは陰極材の蒸発に よるエネルギーロスによると考えられる。

図3に、Hf 蒸気の質量分率を示す。アークプラズ マとの接触により、Hf 電極の蒸発が生じ、電極近傍 において Hf 蒸気の質量分率が高くなっている。こ の Hf 蒸気がトーチ内ノズルからトーチ外の下流に まで輸送され、消費されていくことがわかる。

[1]

