JT-60UのL-H遷移における周辺径電流構造の形成 Structure generation of the edge radial current during the L-H transition on JT-60U

神谷健作¹,伊藤公孝^{2,3,4},伊藤早苗^{4,5},本多充¹ KAMIYA Kensaku¹,ITOH Kimitaka^{2,3,4},ITOH Sanae^{4,5},HONDA Mitsuru¹

¹量研, ²中部大, ³NIFS, ⁴九大極限プラズマ研究連携セ, ⁵九大応力研 ¹QST, ²Chubu Univ., ³NIFS, ⁴Kyushu Univ., ⁵RIAM

背景 閉じ込め改善モード(H-mode)では、最外 殻磁気面(LCFS)から数cmの位置において井戸型の径電場 $E_r(r,t)$ が形成され、その非一様性(シアーおよび曲率)効果で乱流が抑制され、境界輸送障壁(ペデスタル)が形成される[1]。

目的 本研究では E_r の駆動機構について解明するために、JT-60UのNBI加熱プラズマにおける周辺部の E_r 計測 (CXRS) から、ポワソン方程式を用いて径電流構造 j_r (r, t) を評価した[1-4]。

$$\varepsilon_0 \varepsilon_\perp \frac{\partial}{\partial t} E_r = -j_r^{Exp.}$$

結果 図1左列(a)に示すように、NBI加熱開始から約230ms経過後にL-H遷移が発生し、数100msの時定数でDa線の発光強度が減少するとともに線平均電子密度が増加する。L-H遷移後、LCFSから約3cmの位置で井戸型構造のErが形成されるが[5]、その位置でのEr値は密度の増加と同様の時定数で-40kV/m程度まで深くなるが(図1左列b)、jrはLCFSから約3cmの位置で一旦

極大値を示した後、そのブロードな空間構造はペデスタルの成長とともにコア部に数100msの時定数で伝搬することが分かった(図1左列c)。他方、図1右列(a)~(c)に示すように、ペデスタルの成長後に観測される早い時定数での多段階のE、遷移フェイズでは、ピーク値がL-H遷移時の10倍以上で正・負の両極性を有する空間的に局在化した構造のj、が自発的に発生している。考察 観測された径電流生成の時定数および空間構造の多様性は、非線形物理機構の混在・共存性を示唆する。理論モデルから予想される駆動機構との比較についても議論する。

参考文献

- [1] Itoh-Itoh, PPCF1996.
- [2] Rosenbluth, PRL1998.
- [3] Honda, JPSJ2011.
- [4] Kobayashi, SRep. 2016.
- [5] Kamiya, PRL2010.

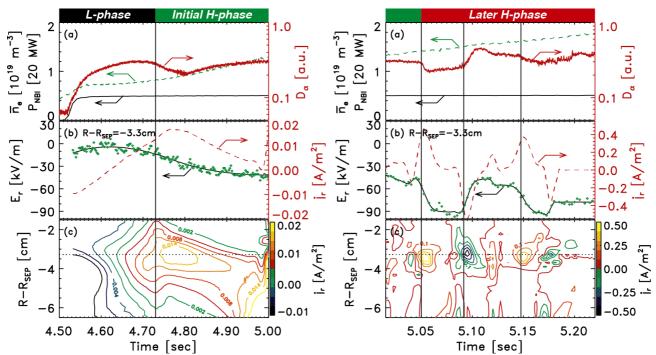


Fig. 1 Waveform for the discharge E049219, indicating (Left) slow L-H and (Right) fast E_r -transitions.(a) n_e -bar, NBI power, and D_{G_r} (b) E_r and i_r at R- R_{SEP} =-3,3cm, and (c) spatio-temporal evolution of $j_r(r,t)$.