5Da02

低周波振動磁場へのFRCプラズマの応答 Response of a field-reversed configuration plasma to applied low-frequency magnetic field

細澤明好¹、浅井朋彦¹、高橋努¹、関口純一¹、小林大樹¹、飯嶋祐佳¹、巽ありさ¹、 岡田成文¹、郷田博司²、Thomas Roche²、井通暁³、髙橋俊樹⁴ Akiyoshi Hosozawa¹, Tomohiko Asai¹, Tsutomu Takahashi¹, Junichi Sekiguchi¹, Daiki Kobayashi¹, Yuka Iijima¹, Arisa Tatsumi¹, Shigefumi Okada¹, Hiroshi Gota², Thomas Roche², Michiaki Inomoto³, Toshiki Takahashi⁴

¹日大理工, ²TAEテクノロジー, ³東大新領域, ⁴群大理工 ¹College of Science and Technology, Nihon University, ²TAE Technologies Inc., ³Graduate School of Frontier Sciences, The University of Tokyo, ⁴Graduate School of Science and Technology, Gunma University

A field-reversed configuration (FRC) is a compact toroid with mostly poloidal magnetic field, which is generated by a plasma current, and it has simply-connected geometry. So, it has an extremely high beta value and it can be translated axially^[1]. Therefore, it is expected as a core plasma for advanced fuel (D-³He and p-¹¹B) fusion reactor. However, an additional heating technique is limited because of the characteristics of the FRC, such as the high beta nature and simply-connected geometry. In the FAT-CM (FRC Amplification via Translation – Collisional Merging) device^[2] at Nihon University, it has been proposed to excite a low-frequency wave in a collisional merging FRC as an additional heating technique.

In the FAT-CM device, a merged FRC, which is excluded flux radius ~ 0.14 m, a length ~ 1.5 m, the volume ~ 0.08 m³ and an average electron density $\sim 8.0 \times 10^{19}$ m⁻³ at quiescent equilibrium phase, is produced in a central confinement section by a collisional merging method. A low-frequency wave is excited in the merged FRC by the loop antennas. The antennas consist of two half-turn coils and can generate an oscillating magnetic field. Also, the antennas are placed on the planes at z = 0.9 and -0.9 m of the confinement section symmetrically with respect to the geometrical axis and the mid plane. The frequency of the oscillating magnetic field is lower than an ion cyclotron frequency ~110 kHz at a separatrix of the FRC because frequencies, which are higher than the ion cyclotron frequency and lower than a electron plasma frequency ~80 GHz are resonant or reflected outside of a separatrix of the FRC and cannot reach FRC core.

Figure1 shows an antenna current and B_z probe signals at the inner wall of the confinement chamber. In this case, a magnetic flux density was

~0.05 T on a center of the coil and the frequency of the antenna current was 91 kHz. The set of antennas was triggered at 100 μ s after the main reversal time. Although the oscillatory wave was not observed on some B_z probe which are part of the antennas in a vacuum shot, the oscillatory wave was observed on all B_z probe signals. Also, it is inferred that the wave propagated in the axial direction because of a phase shift between probe signals. The propagation speed is ~ 160 - 240 km/s which is faster to compare with the Alfvén velocity ~130 km/s.

In this presentation, the response of the FRC to the applied low-frequency wave will be reported with a result of internal and external magnetic field measurement.

FIG.1 Time evolutions of the antenna current (top) and B_z probe signals in the confinement section (bottom). B_z probes are arranged axially on the inner wall of the confinement vessel at the interval of 0.15 m

[1] M.Tuszewski, Nucl. Fusion **28**, 2033 (1988)

[2] T. Asai, et. al, in 27th IAEA-FEC 2018, Gandhinagar, India (2018) EX/P7-20