5Ba02

太陽大気形成過程における観測・理論の現状と将来展望 Formation Mechanism of the Hot and Dynamic Outer Solar Atmosphere

今田晋亮¹、勝川行雄²、鳥海森²、政| Shinsuke Imada¹, Yukio Katsukawa², Shin Toriumi²,

名古屋大学¹、国立天文台²、愛知教育 Nagoya University¹, National Astronomical Observator National Institute for Fusi

本 文

 太陽大気は6千度の光球の上空に1万度の彩層が あり、そのさらに上空に100万度のコロナが存在す ることが知られている(図1)。その外側は惑星空間 ヘプラズマが吹き出す太陽風領域になっている。太 陽のエネルギー源は太陽の中心核で起こる核融合反 応であり、中心により近い光球に比べ、その外側に ある彩層・コロナが高温であることは興味深く、こ の高温の外層恒星大気と太陽風の形成機構を明らか にすることは、長年にわたって太陽物理学の大きな 課題として位置づけられている(コロナ加熱問題)。 本講演では、加熱・輸送・乱流現象における磁場閉 じ込めプラズマ研究と天体プラズマ研究の連携を深 めることを念頭に、太陽大気形成過程における観 測・理論研究の現状と将来展望について議論する。 太陽外層大気は、温度の異なる光球と彩層、彩層と コロナの間は磁力線でつながり、物質であるプラズ マとエネルギーがこれらの間でやり取りされる一つ のシステムである。光球から彩層やコロナにいかに

ノPgmで201熱説社でああるよかは市およるは本講演では、 まず既存の理論モデルについて説明し、その上で観 測との整合性を議論する。このシステムの中で発生 する太陽の磁気活動を本質的に理解するには、それ を構成する基本構造を理解することはもちろん、基 本構造間でやりとりされるプラズマのエネルギー・ 質量の流れを定量的に観測してその物理過程を把握 することが重要である。その理解に必要とされる物 理量は、構造を把握する輝度分布のほかに、磁場、 速度場、温度、密度などとその変動量であり、彩層 からコロナまでの温度範囲を網羅するシステマティ ックな観測を行う必要がある。分布と変動量の観測 は磁場閉じ込めプラズマにも共通する課題でもあり、

Solar-C_EUVSTは2020年代甲盤の打ち上げを中定し ており、現在準備を進めている。

図2:Solar-C_EUVST の外観図

本講演では、この Solar-C_EUVST 計画の概要および 現状も説明し、以下の掲げている具体的なサイエン ス課題に沿って説明する。Solar-C_EUVST 計画では 太陽大気形成過程のみでなく、太陽フレアに関する 科学課題も掲げているが、本講演では太陽大気形成 過程に関する内容に専念して議論する。

Solar-C_EUVST 計画が掲げる大気形成過程の理解に 関する4つの科学課題(図3)は以下

・課題 I-1: ナノフレア仮説の検証

コロナでは巨視的な磁場の繋ぎかえを想起させるコ ロナ構造の変化が X 線や EUV 領域の画像観測から 捉えられている。同様の繋ぎかえ過程が、コロナを 構成するコロナループの微細構造の間で発生し、そ れが主要なコロナの加熱過程であるというのがナノ フレア仮説である。この過程に関わる構造を高い空 間分解能で解像し、またそれにともなうダイナミク スや生成されるプラズマの温度分布を非常に高い時 間分解能で観測し、ナノフレア仮説を検証する。 ・課題 I-2: 波動加熱説の検証

ナノフレア仮説に対して、上空大気の加熱が下層よ り輸送される波動エネルギーの熱化によるというの が波動加熱説である。大気の各高度における波動の モードや位相伝播からエネルギーフラックスをアル ベンタイムを超えた高時間分解能観測で測定し、波 動の非線形化に伴う熱化過程を計測する。

・課題 Ⅰ-3:彩層を構成するスピキュールの形成機
構とコロナへの影響を究明

彩層の理解のためにそれを構成する大小様々のスピ キュールと呼ばれる 0.4 秒角程度の幅と 8 秒角程度 の長さをもつジェット構造の磁気構造とそのダイナ ミクスを明らかにしてその形成機構を究明するとと もに、スピキュールがコロナに供給するプラズマや エネルギーを把握する。

・<u>課題I-4:太陽風発生源の磁気構造・運動を究明</u>太陽風発生領域であるコロナホール内の速度構造と磁気構造の関係を明らかにして、その中のどの構造から太陽風が噴き出すのか、また太陽風加速を担うとされるアルヴェン波の存在、およびその散逸過程を高時間分解能分光観測から明らかにする。

これらの議論を基に、本講演では加熱・輸送・乱流 現象における Solar-C_EUVST 時代における天体プラ ズマ研究と、磁場閉じ込めプラズマ研究の連携・融 合の可能性について議論を行う。両者はプラズマ物 理という共通物理をベースに議論が行われている分 野であり、その共通性も多く、共通性・非共通性を 認識することで相補的に加熱・輸送・乱流現象の議 論を進めることができる。

図3:Solar-C_EUVST における太陽大気形成過程に関する4つの科学課題