kHz電源駆動大気圧He+O2プラズマジェット中の活性種の時空間分布

Spatio-temporal distributions of reactive species in a kHz-driven atmospheric-pressure He+O2 plasma jet

<u>牧野宏紀</u>,村上朝之 <u>Hiroki Makino</u>, Tomoyuki Murakami

> 成蹊大学 Seikei University

1. Introduction

Atmospheric pressure plasmas can easily generate reactive species, which have used in medical and biological application. A kHz-driven atmospheric pressure plasma jet(kHz-APPJ) has been used in Queen's university Belfast [1]. Here, helium gas is used for a carrier gas, and a small amount of oxygen is added. To reveal the detailed of reactive oxygen species (ROS) behavior, we focused on spatio-temporal distribution of the ROS in the kHz-APPJ with He $+O_2$ gas by using time-depended one-dimensional numerical simulation.

2. Modelling

To describe the plasma-dynamics in the kHz-APPJ, a time-depended one-dimensional numerical simulation combined with a detailed chemical kinetic model ^[2] has been developed. We considered 341 reactions among 23 particles (e⁻, He, He(2³S), He(2¹S), He₂^{*}, O, O(¹D), O(¹S), O₂, O₂(vib), O₂(rot), O₂(¹D), O₂(¹S), O₃, He⁺ He₂⁺, O⁺, O₂⁺, O₄⁺, O⁻, O₂⁻, O₃⁻, O₄⁻). O₂/He+O₂ is set to be 0.001~1%. The boundary conditions include 19 wall reactions and secondary electron production. The momentum conservation for electrons, the electron energy conservation, Maxwell-Stefanh equation for heavy particles transport and Poisson equation for plasma potential are solved. Fluid convection term is not considered.

3. Results

Fig. 1 shows an example of the numerically obtained results, i.e. one-dimensional distribution of ROS number density ((a) O, (b) $O_2(^1D)$, (c) O_3) as a function of O_2 admixture after 10ms calculation. It is shown from Fig 1. that the number density of ROS sharply decreased near the cathode side rather than anode side as the O_2 admixture increases. In the bulk region, O, $O_2(^1D)$ and O_3 density are order of $1 \cdot 10^{20}[1/m^3]$, $2 \cdot 10^{19}[1/m^3]$ and $5 \cdot 10^{19}[1/m^3]$.

Fig.1 Spatio-temporal distribution of Reactive oxygen species ((a) O, (b) $O_2(^1D)$, (c) O_3)

4. Conclusion

We have explored the influence of O_2 rate on spatio-temporal distributions of reactive species in a kHz-APPJ by using a one-dimensional timedepended global model. It was revealed that the ROS density become significantly lower near cathode side when the O_2 rate is high, that is, O_2 addition rate affects the plasma structure.

Reference

[1] Q. T. Algwari and D. Connell, Appl. Phys. Lett., Sep 2011.J.S.Sousa et al., Journal of applied physics 109, 123302 (2011)

[2] T.Murakami et.al plasma Sources. Sci. Technol. 22(2013)015003(29pp)