炭素ホローカソード表面の損耗調査 Investigation of carbon hollow cathode surface erosion

<u>御影 裕¹</u>, 比田 圭祐², 粕谷 俊郎², 和田 元² <u>Hiro Mikage¹</u>, Keisuke Hida², Toshiro Kasuya² and Motoi Wada²

¹同志社大学理工学部,²同志社大学理工学研究科 ¹School of Science and Engineering, Doshisha University ²Graduate School of Science and Engineering, Doshisha University

1. 研究概要

ホローカソードによる放電では、長寿命かつ電 離効率の高い放電を可能とするため、カソード材 質の選定が特に重要である.本研究では、モノプ ラズマトロン型イオン源内の炭素ホローカソード によりXeイオンを生成し、ビームとして引き出し を行う際の劣化特性を調査中である.長時間運転 によってイオンビーム電流量は大幅に減少し、こ の際ホローカソード表面状態の変化が観測される. 劣化前後のイオン源の放電特性及び得られるイオ ンビーム電流密度を調査するとともに、ホローカ ソード表面を加工して構造を変化させた際のホロ ーカソード性能を調査する.

Fig. 1. Schematic diagram of the hollow cathode monoplasmatron ion source.

2. 実験装置

Fig. 1 に示したイオン源はガス導入部を有する SUS304 製上部フランジに取り付けられたカソー ド及び中間電極部分の高さ 114 mm,内径 61 mm の絶縁管に挿入される構造となっている.プラズ マ生成室はカーボン製のホローカソード,ニッケ ル製の中間電極及びモリブデン製のアノードで構 成されている.ホローカソードの形状は内径 23 mm,外径 32 mm,高さ 50 mm,底部の厚み 5 mm のカップ状の形状であり,内部のガス圧を上げる ために,カップの出口部分に内径 15 mm,外径 32mm,厚さ 2 mm の絞りが取り付けてある. ビーム引き出し実験の測定系統図をFig.2に示す. イオン源より引き出されたイオンビームは磁界偏 向型質量分析装置により30°偏向されてファラデ ーカップに入射する.また,イオン源と質量分析 装置の間に磁気四重極レンズを挿入することによ り,イオンビームの発散の抑制及び焦点調整を行 っている.

Fig. 2. Schematic diagram of the experimental set up.

3. 実験結果

Fig. 3 に新・旧ホローカソードに対する Xe イオ ンビーム電流密度を示す.ホローカソード劣化前 後ではイオンビーム量が大きく減少し,ホローカ ソード内部を磨いた後のイオンビーム量は,劣化 後に比べ増加する結果が得られた.今後,更に劣 化に伴う表面状態の解析,及び放電特性の変化に ついて,調査する予定である.

Fig. 3. Xe ion beam current density for different hollow cathode conditions.