正イオンビーム重畳時の水素負イオン質量分析

Negative hydrogen ion mass spectrometry during positive-ion beam superposition

白石崇, 森永悠太, 小林大晃, 綿野稜眞, 渡井雅巳, 吉田雅史, 大原渡 T. Shiraishi, Y. Morinaga. H. Kobayashi., R. Watano, M. Watai, M. Yoshida, W. Oohara

山口大院創成 Yamaguchi Univ.

1. 研究目的

セシウムフリーで水素負イオンを生成できる 孔内表面生成法を提案している[1, 2].この 時,負イオンは低エネルギー正イオン照射によ って生成量は多くなるものの,その引出電流量 は現時点では少ない.近年,高エネルギーの正 イオンを重畳によって負電流量が向上した.し かしその中には電子が混在しており,負イオン の定量測定ができていない.そこで磁場偏向型 質量分離器を用いて正イオンビーム重畳時の 負イオンの質量分離し,定量測定を試みた.

2. 実験装置

実験装置を図1に示す.ドライバープラズマで は真空容器をドライバー電圧 V_{driver}によって +100 Vまで上げて正イオンビームを生成する. メッシュで区切られたターゲットプラズマで は真空容器を接地して低エネルギー正イオン を生成した.この正イオンをアルミニウム製プ ラズマグリッド(Al-PG)の孔内(厚さ2 cm, ¢13 mm)に照射して負イオンを生成した.PG裏面か ら1 cm後方に電子除去用磁場をもつ制御グリ ッド(CG)を設置して,負イオンを引き出すと同 時に電子を偏向除去した.さらにCG裏面から1

cm下流に磁場偏向型質量分離器を設置した.質量分離器に引出電圧 V_{an} を印加して,平板コレクタ(2×1 cm²)で磁場偏向分離測定を行った.実験条件は、プラズマグリッド電圧 V_{PG} = +4 V, V_{an} = +600 V である.

3. 実験結果

図2に, 正イオンビーム重畳効果の有無にお ける偏向磁場スペクトルの制御グリッド電圧 Vcg 依存性を示す. Bd~5mT 付近のピークは電 子を, B_d~120 mT 付近のピークは負イオンを現 している. 正イオンビーム重畳しない場合(図 2. (a)), V_{CG} > +100 V 以上で負イオンのピーク が現れて、さらに Vcg を上げても増大せず -0.025 µA 程度だった. 一方, 正イオンビーム を重畳した場合(図 2.(b)), V_{CG} 増加に伴って負 イオン電流量は大幅に増大して、Vcg = +250 V の時に-2.1 µA にまで増加した. また図 2.(b)よ り、 $V_{driver} < V_{CG}$ の条件下では電子が減少すると いうことも分かった. したがって, 正イオンビ ームに応じて負イオン引出加速すると, 負イオ ン電流は増加して電子電流は減少することが 明らかになった.

参考文献

- [1] W. Oohara, et al., Phys. Plasmas, 23 (2016) 083518.
- [2] W. Oohara, et al., Phys. Plasmas, 24 (2017) 023509.