欠陥導入したWにおける重水素滞留挙動の入射フルエンス依存性

Study of Deuterium retention behavior dependence on implantation fluence for damaged W

山﨑翔太¹, 戸苅陽大², 仲田萌子², 周啓来¹, 趙明忠², 孫飛¹, 桑原竜弥³, 波多野雄治⁴ 外山健⁵, 大矢恭久²

YAMAZAKI Shota¹, TOGARI Akihiro², NAKATA Moeko², ZHOU Qilai¹, ZHAO Mingzhong² SUN Fei¹, KUWABARA Tatsuya³, HATANO Yuji⁴, TOYAMA Takeshi⁵, OYA Yasuhisa²

1静大理,2静大院,3名大院工,4富山大水素研,5東北大金研

¹Fac. Sci., Shizuoka Univ., ²Grad. Sch. Sci. Tech., Shizuoka Univ., ³Grad. Sch. Eng., Nagoya Univ., ⁴HIRC, Univ. of Toyama, ⁵IMR, Tohoku Univ.

1. Introduction

Tungsten (W) is considered as one of the candidate for plasma facing materials (PFM) in the future fusion reactors. During the operation, 14 MeV neutron will be irradiated into W and irradiation defects will be introduced uniformly [1]. In contrast, damages by ions or charge-exchanged particles will be accumulated near the surface. Therefore, the distribution of damages in W is ununiform. In this study, both of neutron and Fe ion were irradiated into W. Thereafter, D ion was irradiated by ion beam irradiation or plasma exposure and their D retention behavior was studied by thermal desorption spectroscopy (TDS).

2. Experimental

A disk-type polycrystalline W (6 $mm^{\phi} \times 0.5 mm^{t}$) purchased from A.L.M.T. Co. Ltd. was used. Heat treatments were performed at 1173 K for 30 minutes. 14 MeV fast neutron irradiation was performed with Fusion Neutronics Source (FNS) at damage level of 2.4×10^{-7} - 6.3×10^{-4} dpa. Afterwards, Fe²⁺ was irradiated into these samples at damage level of 0.1 dpa by Takasaki Ion Accelerators for Advanced Radiation Application (TIARA). Thereafter, 1.0 keV D ion implantation (flux: $1.0 \times 10^{18} \text{ D}^+ \text{ m}^{-2} \text{ s}^{-1}$, fluence: $1.0 \times 10^{22} \text{ D}^+$ m^{-2} , R.T.) was carried out for a part of the samples at Shizuoka University. D desorption behavior was evaluated by TDS from room temperature up to 1173 K with the heating rate of 0.5 K s⁻¹. The experimental details were summarized in Table I.

Table I. Experimental detail for ion implanted

samples			
Sample	neutron	Fe ²⁺	Retention
No.			(D m ⁻²)
(1)	$6.3 imes 10^{-4}$ dpa	0.1 dpa	$5.6 imes 10^{19}$
(2)	$2.5 imes 10^{-7}$ dpa	None	$5.0 imes 10^{19}$
(3)	None	0.1 dpa	$1.3 imes 10^{20}$
(4)	None	None	1.1×10^{19}

3. Results and Discussion

Fig. 1 shows the D_2 TDS spectra for D ion implanted damaged W samples.

Fig. 1. D_2 TDS spectra for D ion implanted tungsten samples

It was found that the introduction of irradiation damages enhanced D retention in W. Large D desorption at higher desorption temperature which corresponds to the desorption of D trapped by vacancy clusters and voids, was found for 0.1 dpa Fe²⁺ damaged W. By the combination of neutron and Fe²⁺ irradiation, the D retention was clearly reduced even though the amount of total damage level is higher than that of single Fe²⁺ irradiated sample. These results indicate that 14 MeV neutron introduce the damages throughout the sample, which may enhance the D dynamic reemission from the surface. Despite the lower neutron damage level of 6.3×10^{-4} dpa compared to Fe²⁺ damage level of 0.1 dpa, the effect of damage throughout the sample by neutron may have a large impact on D retention.

References

 M. Shimada, Y. Hatano, Y. Oya, et al.: Fusion Eng. Des. 87, 1166 (2012).