マルチピコ秒ペタワットLFEXレーザーを用いた 湾曲ターゲット中の磁気リコネクション現象の研究

Study of magnetic reconnection in PW laser irradiated curved targets

Law King Fai Farley¹, 安部勇輝¹, Korneev Phillip², Morace Alessio¹, Joao Jorge Santos³, Ehret Michael³, 有川安信¹, 坂田匠平¹, 李昇浩¹, 松尾一輝¹, Liu Chang¹, 森田大樹¹, 落合悠悟¹, 余語覚文¹, 古賀啓資¹, 岡本和輝¹, Golovin Daniil¹, 上司尚善¹, 千徳靖彦¹, 尾崎哲⁴, 坂上仁志⁴, 藤岡慎介¹

King Fai Farley Law¹, Yuki Abe¹, Phillip Korneev², Alessio Morace¹, *et. al.* (著者が多い場合,英文著者名の記載を5名程度とし後はetal.にしてもかまいません)

¹阪大レーザー研, ²NRNU MEPhI, ³ボルドー大, ⁴核融合研 ¹ILE, ²NRNU MEPhI, ³Univ. of Bordeaux, ⁴NIFS

Magnetic reconnection is an important process especially in astrophysics, which is a process of evolution of magnetic field topology, represented by the picture of recombination between anti-parallel configured magnetic field lines. An important feature of this process is that it dissipates magnetic field energy in the form of kinetic energy in energetic charged particles, widely known as reconnection outflow jet.

In this study, we performed magnetic reconnection experiment by irradiation of high intensity laser LFEX on the inner surface of a curved metal targets (Fig. 1), which spontaneously produce (1) Two-directional current flow by laser induced electron vacancy and (2) radially expanding plasma flow by laser heating.

In this experiment, the magnetic field geometry was characterized by deflection of probing proton beam, and the outflow jet in experiment is detected by radiochromic film, recognized as a pair of proton beam with a small divergence. Both energy spectrum measurements of proton and electron in outflow jets showed power-law distribution in non-thermal component. Also, properties of such reconnection outflow showed dependency on the spatial length of the target along the outflow direction.

Physical process behind such experiment results is studied by 3-D collisionless particle-in-cell simulation by simulation code EPOCH. Simulation results showed qualitatively similar trend when compared with experiment, while the absolute magnitude is affected by the down-scale of the simulation because of the limitation of computation power. The essence of the difference would be that shown in Fig. 2, which visualized the magnetic field lines in two different spatial scales which are in scale of experimental targets. This showed the potential of this scheme of laser-driven magnetic reconnection as a platform of studying magnetic reconnection in controllable means.

In this presentation, the laser-driven magnetic reconnection scheme mentioned above and the details of simulation studies would be presented.

Figure 1: Scheme of irradiation of curved metal target (Left), Current direction(Center) and magnetic field distribution(Right) in the target.

Figure 2: Magnetic field lines in two different spatial scale L of reconnection geometry, along the outflow connection: (Left) "Short" while $L \sim d_{laser}$, (Right) "Long" such that $L \sim 5d_{laser}$.