## **Development of Laser-driven Neutron Source and its Applications**

レーザー駆動中性子源の開発とその展開

<u>A, Yogo<sup>1</sup></u>, Y. Arikawa<sup>1</sup>, Y. Abe<sup>1</sup>, M. Kanasaki<sup>2</sup>, S. R. Mirfayzi<sup>1</sup>, N. Iwata<sup>1</sup>, Y. Sentoku<sup>1</sup>, T. Hayakasa<sup>3</sup>, S. Fujioka<sup>1</sup>, M. Nakai<sup>1</sup>, K. Mima<sup>4</sup>, H. Nishimura<sup>1</sup> and Ryosuke Kodama<sup>1</sup> 余語覚文<sup>1</sup>, 有川安信<sup>1</sup>, 安部勇輝<sup>1</sup>, 金崎真聡<sup>2</sup>, S. R. Mirfayzi<sup>1</sup>, 岩田夏弥, 千徳靖彦, 早川岳人<sup>3</sup>, 藤岡慎介<sup>1</sup>,中井光男<sup>1</sup>, 三間圀興<sup>4</sup>, 西村博明<sup>1</sup>, 兒玉了祐<sup>1</sup>) <sup>1</sup>阪大レーザー研,<sup>2</sup>神大院海事,<sup>3</sup>量研東海,<sup>4</sup>光産創大

<sup>1</sup>ILE, Osaka Univ., <sup>2</sup>Kobe Univ., <sup>3</sup>QST, <sup>4</sup>GPI

Laser-driven neutron sources (LANS) are attracting attention as a new neutron source to replace nuclear reactors and accelerators. However, because of its low efficiency on the neutron generation yield, the laser-driven neutron source still remains at the stage of basic research at present. Recently, efficient ion acceleration has been achieved with picosecond (ps) relativistic-intensity laser [1]. Here, we report on the efficient neutron generation boosted by efficient acceleration of MeV-energy deuterons with the ps laser pulse. The high neutron yield allows us for the first time to obtain radiographic image by neutrons with a single laser shot.

The laser pulses having a duration of 1.5 ps (FWHM) are delivered from LFEX [2] and focused onto a few-micron-thick foil of deuterated polystyrene (CD) with the intensity up to  $1 \times 10^{19}$ Wcm<sup>-2</sup>, corresponding to the laser energy 1 kJ. Protons and deuterons (ions of deuterium) are accelerated toward the laser propagation direction up to 20 MeV with the 1-kJ laser, when the laser energy conversion efficiency is evaluated as 3.5% for deuterons over 5 MeV. Detailed mechanism of the ion acceleration will be discussed in the presentation. The accelerated ions bombard a solid beryllium block and converted into fast neutrons via nuclear reactions. The setup is shown in Fig. 1. Using CR-39 track detectors and bubble detectors, we confirm that  $1-2 \times 10^{11}$  neutrons are generated at maximum in  $4\pi$  direction.

The fast neutrons are decelerated by a polystyrene block having a thickness of 10 cm down to thermal or epithermal energy region and used for neutron radiography. In order to obtain background-free neutron images, we utilize the neutron capture process of  $^{164}$ Dy. A shadow of boron carbide (B<sub>2</sub>C), which is often used as a neutron absorber of a control rod of nuclear reactor, is clearly monitored on the Dy detector, while the B<sub>2</sub>C shadow is not recorded on an Imaging Plate detector that is sensitive to plasma-induced x-ray. This fact is the evidence that our radiographic

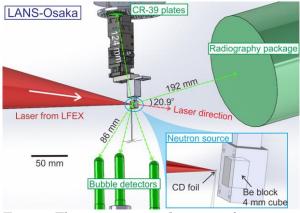



Fig. 1: The experimental setup of neutron generation.

image on the Dy detector is attributed to neutrons, not x-rays.

Considering that the temporal duration of the neutrons is around 0.1-1 ns, the neutron flux reaches  $10^{19-20}$  s<sup>-1</sup>cm<sup>-2</sup>. The high-flux burst of neutrons achieved here leads to several advanced applications including high-speed imaging of fast phenomena, turbulence in piping for instance, and time-of-flight neutron absorption analysis of matters with higher resolution. At the same time, our LANS can pave a way toward novel nuclear physics and laboratory astrophysics. The feasibility for future applications will also be discussed.

This work was funded by Grants-in-Aid for Scientific Research (Nos.25420911 and 26246043) from MEXT, A-STEP (AS2721002c), and PRESTO (JPMJPR15PD) organized by JST.

[1] A. Yogo et al., "Boosting laser-ion acceleration with multi-picosecond pulses." Sci. Rep. 7, 42451 (2017).

[2] J. Kawanaka et al. J. Phys. Conf. Ser. 112, 032006 (2008).