慣性核融合プラズマ計測 The plasma diagnostics in inertial confinement fusion

有川安信

Yasunobu Arikawa 大阪大学レーザーエネルギー学研究センター Institute of Laser Engineering, Osaka University

慣性核融合に限らず、すべての核融合プラズ マ実験ではプラズマ状態を診断し、温度、密度 が目標に達しているか、またシミュレーション 予測と比較し、設計どおりの状態が実現してい るかなどを評価する事が重要である。慣性核融 合、特にレーザー核融合におけるプラズマは、 サイズが小さく(10 µ mから1mm)、持続時間 が短く(10psから1ns)、密度が高いため(固 体密度の1000倍)不透明であるという特徴を持 ち、この三重苦から慣性核融合におけるプラズ マ診断はどれも困難な課題を克服して来た技 術ばかりである。またレーザー核融合では強い レーザー散乱光や、電磁パルス、X線による計 測ノイズが発生するため、それらを避けるため の対策もなされている。特に高速点火レーザー 核融合では、超短パルスレーザーを用いるため、 加熱の瞬間に発生する強いX線や電磁ノイズが おおよそ全てのプラズマ計測を阻害する。それ ゆえ高速点火レーザー核融合実験用に開発さ れたプラズマ計測器は特別な対策が講じられ ている。

本講演ではレーザー核融合実験におけるプ ラズマ計測のオーバービュー(表1に一覧を記 載)を行なうとともに、比較的新しいプラズマ 診断技術のトレンドを紹介する。

X線計測のトレンド

従来より、X線の自発光計測によってプラズ マの形状や、電子の輸送を計測することは行な われて来た。X線のブラッグ反射によって非常 に細い線幅のX線のみを結像する事によって優 れた分解能を実現する計測が汎用化され、応用 例が増えている。例えば銅からのkα線に最適 化されたブラッグ反射結晶で、湾曲トロイダル に変形させたものが広く使われている。ターゲ ットにはあらかじめ銅のレイヤーを挿入する か、銅が均一に混ぜられた有機材料や銅のフォ ーム材料がターゲットとして用いられる。ター ゲットを挟んで向かい合う2方向から計測器を セットアップし、片方には湾曲ブラッグ結晶、 もう一方には遮蔽用コリメーターとイメージ ングプレートが装備されている。

銅のkα線は固体状態の銅の中を高速電子が 走った際に放出されるから、高速点火核融合に おける電子ビームの輸送計測に用いられる事 が多い。

計測器として用いられるのはイメージング プレートが主流であり、電磁ノイズにも強く、 絶対値キャリブレートがなされているから、電 子の絶対量を導出する事も出来る。

図 1 銅 kα線単色イメージングによる画像 撮影。円筒上のターゲットの内側にレーザー を当て電子が円筒沿いに走った事を示す。

中性子計測のトレンド

従来のプラスチックシンチレーターは蛍光寿 命が長いため、より応答の速い液体性シンチレ ーターやビフェニルと呼ばれる有機結晶性シ ンチレーターが用いられるようになった。X線 に感度が無い中性子TOF計測は未だ実現してお らず、時間分解でX線と中性子を弁別する方法 が取られている。高速点火レーザー核融合の場 合は、X線信号が中性子信号に比べて1000倍~ 100,000倍も強くなるから、X線信号によって光 電子増倍管やオシロスコープを破損させない よう、ゲート機能がついた光電子増倍管が用い られる。300J程度の加熱レーザー実験ならばそ れだけで対処可能であるが、kJを超えてくると X線のエネルギースペクトルが高くなり、ター ゲットチャンバーなど実験構造物から光核反 応で中性子を発生させ、これが観測対象の核融 合中性子よりも遥かに大きくなる。

円筒状のコリメーターを設置し、コンクリート壁に小さな穴をあけて中性子コリメーター にして、壁の外で計測する事が主流に成っている。従来からの中性子スペクトル拡がりによる イオン温度計測に加えて中性子計測分解能が 向上し、散乱中性子が計測可能になったことで、 爆縮コアの燃料ρRも中性子計測から求められ

図2 中性子計測器の設置方法と、スペク トル計測の例(米国 OMEGA 装置)。床 に穴がありコリメーターとなっている。 シンチレーション信号から散乱中性子が 細測されている

るようになった。

超短パルスレーザー光を用いた計測のト レンド

加熱用レーザーを光源としてX線バックライ トや、プロトンラジオグラフを行なう計測が盛 んになっている。これらの手法は、線源が点源 でパルス幅がレーザーのパルス幅程度(すなわ ちps程度)であるから、計測器を単純なイメー ジングプレートなどを用いるだけで、超高速で 高解像度の画像を得る事が出来る。

図 3 超短パルスレーザーを用いたフラッシュ X線バックライトによるコアプラズマ。チタン の k α線をブラッグ結晶で単色イメージングし た、バックライト画像。コアプラズマや、ター ゲットの形状、コイルターゲットがくっきりと 見える。

		レーザー駆動爆縮におけるプラズマ診断技術						
	物理過程	計測対象名	計測手法名	計測機器種類	典型的な分解能(空間/時 間)	X線・中性子・ 光・電子	対象プラズマ温度	対象プラズマ電子密度
ナノ秒レー ザーの物理	レーザープラズマ相互作用	ブリラン散乱、ラマン散乱、2プ ラズモン崩壊、Cross Beam Energy Transfer	レーザー散乱光計測	散乱板、CCD、分光器	無し/無し	光	常温~10keV	~臨界密度
	爆縮	加速軌跡、対称性	X線自発光、X線バックライト	X線ピンホール+X線CCDカメラ	(5µm/無し)	X線	0.5~10keV	臨界密度~10倍臨界密度
				X線ピンホール+X線ストリークカメラ	(10 µ m/20ps)	X線	0.5~10keV	臨界密度~10倍臨界密度
				X線ピンホール+X線フレーミングカメラ	(10 μ m/40ps)	X線	0.5~10keV	臨界密度~10倍臨界密度
		衝撃波速度	Velocity Interfer-ometer System for Any Reflector	プローブレーザー+干渉光学系+可視 ストリークカメラ	10 μ m/20ps	光	常温~10eV	固体表面
		コア密度	X線バックライト	X線ピンホール・X線結像結晶+ストリー クカメラ	(20 µ m/20ps)	X線	常温~10keV	固体密度~100倍固体密度
				X線ピンホール・X線結像結晶+フレーミ ングカメラ	(20 μ m/40ps)	X線	常温~10keV	固体密度~100倍固体密度
				超短パルスレーザーによるX線+湾曲X 線ブラッグ結晶+イメージングプレート	5μm/1ps	X線	常温~10keV	固体密度~100倍固体密度
			ノックオン粒子	CR-39トラック検出器	無し/無し	プロトン	常温~10keV	固体密度~10倍固体密度
			散乱中性子	中性子TOF検出器	無し/0.5ns	中性子	常温~10keV	固体密度~1000倍固体密度
		コア形状	中性子画像	中性子ピンホール+中性子シンチレー ターアレー+ゲートICCD	50μm/3ns	中性子	3keV~10keV	10倍固体密度~1000倍固体密度
		コアプラズマ電子温度	X線分光	X線分光器+ストリークカメラ	10 µ m/20ps	X線	1~5keV	固体密度~100倍固体密度
		コアプラズマイオン温度	中性子スペクトル拡がり	中性子TOF検出器	無し/0.5ns	中性子	1~10keV	固体密度~1000倍固体密度
	プラズマ閉じ込め	中性子履歴	中性子バーンヒストリー	超高速シンチ+ストリーク	無し/25ps	中性子	1~10keV	固体密度~1000倍固体密度
	磁場発生	磁場分布	ファラデーローテーション	プローブレーザー+結晶+偏光スプリッ ター+ストリークカメラ	無し/0.1ns	光	常温~10eV	真空~0.001臨界密度
			Bドットプローブ	コイル+オシロスコープ	無し/0.1ns	電気	常温~1keV	真空~臨界密度
			プロトンラジオグラフ	超短パルスレーザー生成プロトンビー ム+ラジオクロミックフィルム	50 μ m/20ps	プロトン	常温~1keV	真空~固体密度
超短パルス レーザーの物 理	流体不安定性	ミキシング	X線分光	ターゲットにトレーサードープ、X線分光	50 μ m/20ps	X線	1~10keV	固体密度~100倍固体密度
	レーザープラズマ相互作用	散乱光、高調波生成	レーザー散乱光計測	光学系、CCDカメラ、分光器	10µm/無し	光	常温~10eV	臨界密度
	電子加速	電子エネルギースペクトル	電子スペクトロメーター	磁場+イメージングプレート	無し/無し	電子	常温~1keV	~10倍固体密度
	制動放射	X線エネルギースペルトル	X線分光	フィルタースタック+イメージングプレー ト	無し/無し	X線	常温~1keV	~10倍固体密度
	制動放射、対生成	高エネルギーX線エネルギース ペクトル	コンプトン散乱	コンプトン散乱+電子スペクトロメーター	無し/無し	X線	常温~1keV	~10倍固体密度
	制動放射、光核反応	γ線エネルギースペクトル	光核反応	金属スタック+バブル検出器	無し/無し	X線	常温~1keV	~10倍固体密度
	イオン加速	イオン種、エネルギースペクト ル	トムソンパラボラ計測器	磁場、電場、イメージングプレート	無し/無し	プロトン	常温~1keV	~10倍固体密度
	プレプラズマ	イオン空間分布	プロトン分布	ラジオクロミックフィルム	5μm/30ps	プロトン	常温~1keV	~10倍固体密度

表1 レーザー核融合におけるプラズマ計測のオーバービュー