大電力電磁加速推進機とRFプラズマスラスタ:研究の現状 High Power Electromagnetic Acceleration Thruster and RF Plasma Thruster: Research Status

大塩 裕哉 Yuya Oshio

東京農工大学 Tokyo University of Agriculture and Technology

はじめに

Boeingが2015年に打ち上げたSP702に代表さ れる軌道遷移や軌道維持をすべて電気推進機 で行なう全電化衛星や、太陽発電衛星などで要 求される大規模軌道間輸送、木星以遠の深宇宙 探査など電気推進機の需要の高まりと共に、要 求される性能も高くなってきている。特に、短 時間の軌道遷移で要求される"大電力化"と数年 から10年以上のミッションに耐えられる"長寿 命"が今後の電気推進機の重要な課題であると 考えられる。大電力に適した電気推進機の1つ にMPD(MagnetoPlasma Dynamic)スラスターが ある。MPDは、数値解析や準定常実験において 高い推進効率と推力密度が得られているが、 100 kW以上の電力が必要であり、電極溶融を防 ぐための熱設計が課題である。また、電極の損 耗は長寿命化の大きな障害であることから、高 周波放電と無電極プラズマ加速による無電極 RFプラズマスラスタの研究が進められている。 本発表では、JAXA 宇宙科学研究所と農工大で 行なわれているMPDスラスターと無電極RFプ ラズマスラスタの研究の現状を特に実験に着 目して紹介する。

大電力電磁加速推進機

宇宙科学研究所で進められているMPDスラ スターの研究開発メソッドをFig.1に示す。バル クプラズマから電極現象まで自己無撞着に計 算するシースモデルと熱解析を含むMHDシミ ュレーションとmsオーダーの準定常実験を組 み合わせてMPDスラスターの最適化設計を進 めている。準定常実験では、数値解析で設計し た放電室形状のMPDスラスターの推力・プラズ マ計測を主に行っている¹⁾。Figure.2に振り子式 スラストスタンドを用いた推力計測結果から 得られた推進効率と比推力を示す。Arでは推進

(a) Ja=9.0 kA. (b) Ja=13.5 kA. Fig.3 放電中のカソード表面温度計測結果. (Ar 0.7 g/s)

効率18%、比推力3000 s、水素では推進効率60%、 比推力9000 sを達成している。特にArにおいて は、更なる推進性能の改善が必要であり、放電 室形状の最適化を進めている。一方で、電極の 溶融を防ぐための熱設計や、推進性能にも大き く関わるシース現象の調査も進めている。両者 の評価のために重要となる電極温度分布を実 験的に計測するために1 msの準定常動作中の電 極の2次元温度分布が得られる2色輻射温度計 測システムを構築した。陰極の表面温度分布計 測結果の一例をFig.3に示す。低い放電電流では 陰極先端のみが加熱されており放電電流が高 くなると陰極全体が加熱されておいる。放電電 流により電極の温度分布特性が大きく異なる 事が明らかになり、この結果を数値解析へフィ ードバックし、より精度の高いMPD設計ツール の開発を行なっている。

RFプラズマスラスタ

農工大にて研究を進めている無電極RFプラズ マスラスタの概略図をFig.4に示す。このスラスタ ーは無電極RF放電によりプラズマを生成し、磁気 ノズル(出口付近の発散磁場)によりプラズマを無 電極で加速する完全無電極のスラスターである。 無電極プラズマスラスタは、推進効率が低いのが 課題であり、推進効率改善のために研究を進めて いる。我々は、放電室内部に磁気カスプを作るこ とでプラズマ生成効率を向上させ、1kWから数 kW程度の電力において推進効率の改善を目指し ている。真空チャンバー内部の推力計測試験の写 真をFig.5に示す。スラスターは放電室であるガラ ス管、3巻きのコイル型のRFアンテナ、カスプ磁 場と磁気ノズルを作る永久磁石から構成され、捻 じり振り子式のスラストスタンドに搭載されて いる。Figure.6に推力計測結果から求めた推進効 率と平板型プローブで計測されたプルーム中の 全イオン電流計測から求めた推進剤利用効率(推 進剤ガス流量とプラズマとして加速排気された 量の比)のグラフを示す2)。カスプありの条件では、 400 Wから500 Wにかけて大きな推力上昇が見ら れ、その後カスプなしの条件より推力が高くなっ ている。推進剤利用効率は1kWにおいてカスプな しの9%からカスプありの23%へと大きなプラズ マ生成効率改善を達成した。しかしながら、1kW においてカスプの有無による推力差は小さく、生 成されたプラズマの効率的な加速ができていな いことが明らかになった。現在は、カスプとアン テナの位置関係が推進性能に及ぼす影響を調べ ており、これまでにアンテナはカスプより下流側 に置き、アンテナは放電室の下流端付近に設置

することでより高い推進性能が得られることを 明らかにしている。しかし、推進効率は最大で 0.9%程度であり、さらなる放電室内のアンテナや 磁場分布の最適化を進めている。

参考文献

1) Y, Oshio., S, Tonooka., I, Funaki., Thrust Performance and Cathode Temperature Evaluation of MW Class Quasi-Steady MPD Thruster, *52nd AIAA/SAE/ASEE Joint Propulsion Conference*, AIAA2016-5039, July, 2016.

2) 大塩 裕哉, 伊藤 祥, 中村 隆宏, 西田 浩之,磁気ノズル型へ リコンスラスタの磁場形状とアンテナ位置が推進性能に与える 影響, 第 47 期定時社員総会および年会講演会, 1D15, 2016 年 4 月.