PIC法を用いた静磁場印加型マイクロ推進機の数値解析 PIC simulations for microthrusters with applied magnetic field

鷹尾 祥典 Yoshinori Takao

横浜国大 YNU

はじめに

プラズマスラスタにおいて磁場を用いたプ ラズマの制御は、プラズマ生成の効率化やプラ ズマ加速などに古くから利用され、先進的スラ スタにおいても重要な技術の一つである. 特に 系が小さくなれば、表面積割合の増大から壁面 でのプラズマの損失増大が避けられず,磁場に よる閉じ込め等がより重要になってくる.しか しながら、磁場を印加するとプラズマの挙動が 複雑になり,個々の対象に応じて解析が必要と なってくる. また, 系が小さい場合には擾乱な どの都合,実験的に計測することが難しく,数 値解析が強力な手段の一つとなる.本稿ではそ の中でも,連続体近似が難しくなる低圧プラズ マにおいて有効なPIC (Particle-in-Cell) 法を利 用した例として,静磁場印加を行うマイクロ波 放電式中和器と高周波無電極プラズマスラス タの2種類について紹介する.

数値計算手法

本研究で用いる粒子計算法は上述の通りPIC 法であり,荷電粒子と中性粒子との衝突を Monte Carlo collision (MCC) 法により考慮して いる.モデルの詳細は過去の文献に委ね^{1,2)},こ こでは簡単に述べるに留める.マイクロ波放電 式中和器(図1に計算領域,図2に静磁場分布を 示す)の解析にはアンテナの構造上3次元デカ ルト座標系を用いる一方、高周波無電極スラス タ(図4に計算領域,図5に静磁場分布と中心軸 上の磁場分布を示す)の解析には2次元軸対称 座標系を用いている.また,中性粒子分布に関 しては中和器ではプラズマ源において300 Kの マクスウェル分布で、時間的・空間的に一様と する一方で, 無電極スラスタにおいては中性粒 子枯渇減少を擬似的に考慮するためにもモン テカルロ直接法 (DSMC: Direct Simulation Monte-Carlo) を利用した解析を行っている.

解析例

まず,マイクロ波放電式中和器の解析例につ

いて紹介する.これまでの研究により小型マイ クロ波放電式中和器からの電子引き出しにお いて、プラズマ源内部の静電場が重要な役割を 担っており、特にその電場と永久磁石の静磁場 とのE×Bドリフトが電子引き出しに大きな影響 を与えていることが分かってきている¹⁾.図3に ECR領域においてxy平面で切り取ったポテンシ ャル分布を示す.これはマイクロ波100周期分 で平均した結果である.10 µs程度の長い周期で 平均した場合には見えなかった縞模様の特徴 的な構造が見える.これらは時計回りに回転し ているように見え、この分布によりθ方向の電 場が形成され、結果として電子引き出しを行う オリフィス側へと電子が輸送されていると考 えられる.

次に, 高周波無電極スラスタの解析例につい て紹介する.これまでの研究で高密度プラズマ 生成の結果生じるスラスタ下流での中性粒子 枯渇現象およびそれに伴う壁面での運動量損 失により推進性能が悪化することが分かって きた³⁾. この改善のために, スラスタ上流だけ でなく下流からも推進剤ガスを導入したとこ ろ,プラズマ分布が軸方向に対称的な分布とな ることで、壁面での運動量損失の削減につなが った.また、図5に示すソレノイドコイルの電 流を上昇させ磁場強度を強くすると,上流側に ピークを迎えていたプラズマ密度分布がソレ ノイド直下へと移動してくる傾向が、推進剤ガ スの導入方法を上流からと下流からのいずれ にしても見られることが分かった(図6).こ れにより磁場印加を強めることも推進剤ガス の導入方法とならんで推進性能改善の鍵とな っている.

参考文献

- 1) Takao, et al., Jpn. J. Appl. Phys., 55 (2016) 07LD09.
- 2) Takao and Takahashi, Phys. Plasmas, **22** (2015) 113509.
- 3) Takahashi et al., Phys. Rev. Let., **114** (2015) 195001.

図 1 マイクロ波放電式中和器の計算領域

図3ポテンシャル分布図

²² 200 0 0 0 0.5 1 1.5 2 2.5 3axial distance z (cm)

図 5 ソレノイドによるスラスタ内の磁束密度分 布(上)と中心軸上における磁場分布(下)

図 6 上から上流:下流の流量比が上流のみ, 20:1, 3:1, 1:1 および中心軸上最大磁場 100 G (左列), 300 G (右列) におけるプラズマ密度分布

本稿全ての図の出典:第60回宇宙科学技術連合講演 会講演集©日本航空宇宙学会(JSASS-2016-4687, JSASS-2016-4690)