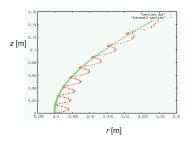
非軸対称磁場を伴うトカマクプラズマの平衡と位置安定性 Equilibrium and its Positional Stability of Tokamak Plasma with Nonaxisymmetric Magnetic Field

筒井広明、畠山昭一、飯尾俊二 Hiroaki TSUTSUI, Shoichi HATAKEYAMA, Shunji TSUJI-IIO

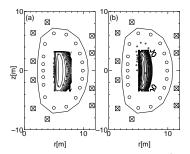
東工大原子炉研

Tokyo Tech

我々は従来のトカマクに非軸対称磁場を印加することで、垂直位置不安定性を伴わない縦長断面形状を持つ配位を提案している。この印加磁場はトロイダル磁場を変調し、実効的な垂直磁場を生成し、軸対称配位では両立できない「外側が強く、外に凸」の真空ポロイダル磁場を作ることができる。この印加磁場はトロイダル方向に平均すると、その値はゼロとなるが、実験的に位置安定性改善に有効であることが示されている[1]。本研究ではこの非軸対称成分を含むトカマク平衡を真空領域を含む磁気エネルギー極小条件で求め、位置安定性も併せて評価する。


プラズマの安定な平衡配位は磁気エネルギーを極小にすることで求めることが出来る。ヘリカル配位の変更配位を求める標準的なプログラム、VMEC もこの方法に基づいている。しかし、VMEC は磁気座標を用いているため、セパラトリックスが存在する配位では使うことが出来ない。一方、電流源を含む系の平衡配位は、電流源が供給するエネルギーを含めた自由エネルギーを定義することで、自由エネルギー極小条件の下、実空間座標で求めることが出来る [2]。圧力を無視した場合、線電流、及び面電流系(磁気面)の自由エネルギーは、

$$U = \frac{1}{2} \sum_{\psi_i = \text{const.}} \psi_i I_i - \frac{1}{2} \sum_{I_j = \text{const.}} \psi_j I_j$$


で与えられる。ここで、 $\psi_i,\ I_i$ は i 番目の線電流 / 面電流(磁気面)の鎖交磁束および電流である。第 1 項は、プラズマ、真空容器など電源のつながっていない部分のエネルギー、第 2 項は、電源のつながっているコイルの寄与分を表す。また、磁束 ψ_i と電流 I_i は独立ではなく、インダクタンス行列 M、

$$\psi_i = \sum_j M_{ij} I_j$$

で関係づけられている。この M が線電流軌道 / 磁気面形状の(汎)関数であるので、自由エネルギー極小条件が安定平衡を与える。プラズマを線電流で模擬した場合、n-index が負の配位について、安定平衡例が得られている。面電流系の解析結果についても示す予定である。

真空磁場の磁力線の (r,z) 面での 軌跡。緑: 軸対称磁場、赤: 軸 対称磁場にヘリカル磁場を印加し たもの。

軸対称系での自由エネルギーの 剛体変位に対する分布 [2]。

- [1] S. Hatakeyama et. al, Proc. 39th EPS Conference, P1.046 (2012).
- [2] H. Tsutsui, R. Shimada, J. Plasma Fusion Research 72, p. 1252–1258 (1996).