不純物蓄積が抑制された高パワーNBI 定常放電の特性

Characteristics of high power NBI heated steady state discharges without impurity accumulation

中村幸男,田中謙治,田村直樹,吉沼幹朗,鈴木千尋,吉村信次,B. J. Peterson NAKAMURA Yukio, TANAKA Kenji, TAMURA Naoki, YOSHINUMA Mikiro, SUZUKI Chihiro, YOSHIMURA Shinji, Byron Jay PETERSON

核融合研 NIFS

これまでに NBI 加熱 (10 MW 以下) を用い た LHD 定常放電では放電中に不純物が蓄積し、 コアプラズマの温度が低下する現象が見られ た。その不純物蓄積現象はある衝突周波数領域 で観測され、図1に示されるように、径方向電 場による影響とエルゴディック層での不純物 シールド効果によって不純物蓄積領域が決ま ることが分かっている [1, 2]。しかしながら、 最近の NBI 高パワー加熱定常放電では、不純 物蓄積が顕著に抑制され、図1で示される不純 物蓄積窓(赤点領域)は観測されず、全ての衝 突領域で良好な閉じ込めが維持されることが 分かった。そこで、この放電の不純物挙動につ いて、各種プラズマパラメータ依存性を調べ、 これまでの不純物蓄積放電と比較しながらそ の放電特性を調査した。

高パワー加熱定常放電では、時間的にほぼ一定の炭素密度分布が得られることから、炭素密度分布のパラメータ依存性を調査した。図 2 はプラズマ密度を変化させた時の炭素密度分布を示す。低密度放電(n_e =1.52x 10^{19} m $^{-3}$)では、顕著なホローの炭素密度分布が得られ、中密度放電 (n_e =4.33x 10^{19} m $^{-3}$) ではコア部で平坦な分

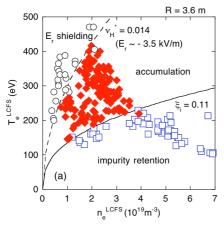


図 1 最外核磁気面での不純物挙動に対する n-T ダイアグラム (P_{nbi} < 10 MW)

布となる。さらに、高密度放電(ne=6.12x1019m-3) では中密度放電と同じような平坦分布である が、炭素密度が全体的に減少しているのが分か る。高密度でのコア部の炭素密度の減少はエル ゴディック層での不純物シールド効果による 不純物入射束の減少によるものである。これら の炭素密度分布の形状変化のパラメータ依存 性を調べるために、図2に示されるように炭素 密度分布を多項式近似し、規格化された炭素密 度勾配スケール長 (R_{ax}/L_{nc}= -R_{ax}∇n_c/n_c)を 計算し、プラズマパラメータに対する依存性を 調べた。図3はそのスケール長 $(\rho = 0.5)$ の水 素イオンの衝突周波数依存性を示す。衝突周波 数の減少と共に炭素密度分布はホロー分布と なり、その勾配が大きくなることが分かる。規 格化イオン温度勾配に対しては、温度勾配が大 きくなるとホロー分布になる傾向があること が分かった。講演では、不純物の新古典輸送で 重要な径電場や乱流輸送で重要となるトロイ ダル流速あるいはその勾配などに対する依存 性を含めて議論する予定である。

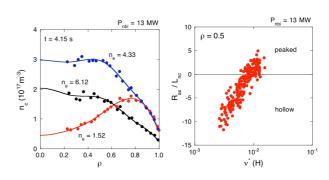


図 2 炭素密度分布の電子 密度依存性

図3 炭素密度分布勾配の 規格化スケール長の 衝突周波数依存性

参考文献

- [1] Y. Nakamura et al., PPCF 44 (2002) p.2121
- [2] Y. Nakamura et al., PPCF 56 (2014) 075014