GAMMA 10/PDXにおけるターゲット板前面のHα線強度の空間分布計測 Measurement of spatial distribution of Hα line intensity in front of the target plate in GAMMA 10/PDX

野原涼¹⁾、坂本瑞樹¹⁾、寺門明紘¹⁾、大木健輔¹⁾、細井克洋¹⁾、木暮諭¹⁾、武田寿人¹⁾、 市村和也¹⁾、長塚優¹⁾、吉川基輝¹⁾、水口正紀¹⁾、古館謙一¹⁾、加藤太治²⁾、坂上裕之²⁾、 吉川正志¹⁾、中嶋洋輔¹⁾、今井剛¹⁾、市村真¹⁾ NOHARA Ryo¹⁾, SAKAMOTO Mizuki¹⁾, TERAKADO Akihiro¹⁾, OKI Kensuke¹⁾, et al.

1) 筑波大学プラズマ研究センター, 2) 核融合科学研究所
1) Univ. Tsukuba, 2) NIFS

Plasma-wall interaction (PWI) is an important issue for stable sustainment of confined plasma. In the tandem mirror device GAMMA 10/PDX, we have studied edge plasma for understanding of PWI phenomena such as hydrogen recycling. In this study, we inserted a target plate of tungsten or carbon in the west-end region of GAMMA 10/PDX, and observed the profile of H α line intensity in front of the target plate with a high-speed camera as shown in Figure 1.

Figures 2 and 3 show the H α line intensity at x=0 (i.e. center of the target) as a function of z in the case of tungsten and carbon targets, respectively. z=0 means the target surface position. The solid lines in Fig.2 and Fig.3 are fitting lines that are drawn by using an exponential function. In the case of the tungsten target plate (W-target), we observed two decay components. The shorter decay length is about 5mm and the longer one is about 80mm. In the case of the carbon target plate (C-target), on the other hand, there is only one decay component, which is about 80mm.

Considering the normal plasma parameter in

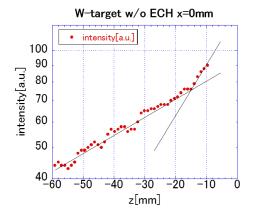


Fig.2 H α line intensity at x=0 (i.e. center of the target) as a function of z in the case of tungsten target plate.

GAMMA 10/PDX, the observed decay length is much shorter than the mean free path of excitation (n=3) for the neutral hydrogen atom reflected on the surface, suggesting that the reflected hydrogen atoms were at excited state due to the collision with the target.

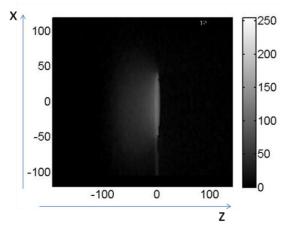


Fig.1 Camera image of H α line intensity in front of the target plate.

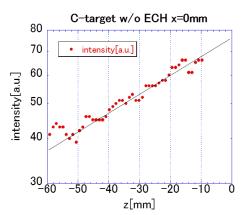


Fig.3 H α line intensity at x=0 as a function of z in the case of carbon target plate.