PANTAにおけるトモグラフィを目指した多チャンネル分光計測 Multi-channel spectroscopic measurement for tomography in PANTA

藤野博充¹,藤澤彰英^{2,3},永島芳彦^{2,3},稲垣滋^{2,3},小林達哉¹,満薗友宏¹,三輪祐大¹, 高橋宏輔¹,大野翔¹,武次克哉¹,恩地拓己²,糟谷直宏^{2,3},佐々木真^{2,3}, 小菅佑輔⁴,山田琢磨⁵,伊藤早苗^{2,3},伊藤公孝^{3,6}

FUJINO Hiromitsu¹, FUJISAWA Akihide^{2,3}, NAGASHIMA Yoshihiko^{2,3}, INAGAKI Shigeru^{2,3}, KOBAYASHI Tatsuya¹, MITSUZONO Tomohiro¹, MIWA Yudai¹, TAKAHASHI Kosuke¹, ONO Sho¹, TAKETSUGU Katsuya¹, ONCHI Takumi², KASUYA Naohiro^{2,3}, SASAKI Makoto^{2,3}, KOSUGA Yusuke⁴, YAMADA Takuma⁵, ITOH INOUE Sanae^{2,3}, ITOH Kimitaka^{3,6}

¹九大総理工,²九大応力研,³九大伊藤極限プラズマ研究連携センター, ⁴九大高等研究院,⁵九大基幹教育院,⁶核融合研究所, ¹Interdisciplinary Graduate School of Engineering Sciences Kyushu Univ., ²RIAM Kyushu Univ., ³Itoh Research Center for Plasma Turbulence Kyushu Univ., ⁴IAS Kyushu Univ., ⁵Faculty of Arts and Science Kyushu Univ., ⁶NIFS

高性能のプラズマを実現するために、プラズマ 乱流がどのようにして、プラズマの閉じ込めに影 響を与えるのかを解明する必要がある。そのため には、乱流プラズマをミクロスケールのドリフト 波とともに、帯状流などの大域的構造を同時に観 測することが不可欠である。プラズマ全体に対し 乱流を十分な精度で観測するための方法として トモグラフィが考えられる。その試行のために多 チャンネルトモグラフィシステムを九州大学の 直線プラズマ装置 PANTA(Plasma Assembly for Nonlinear Turbulence Analysis)に設置し実験を行っ ている。

図 1. (a)ディテクターアレイ設置後の PANTA 断面図, (b) ディテクターアレイのチャンネルの並びと写真

直線プラズマ生成装置 PANTA は直径 0.1m のへ リコンアンテナによって、軸方向の長さが4mの 円筒状のプラズマを生成する。このプラズマの周 方向に 45° ずらしてそれぞれ A, B, C, D の位 置に4つのトモグラフィ用ディテクターアレイ が設置されているのを図 1(a)に示す。それぞれの ディテクターアレイは図1(b)に示すように、縦一 列33個のチャンネルが5mm間隔で並んでいる。 それぞれの列のチャンネルは光学フィルタを用 いて紫外(294±20nm), 青(476.5±30nm ArII), 赤 (696.5±30nm ArI),赤外(900±20nm ArI)の波長の光 を受けている。それぞれのチャンネルの光は光フ ァイバにより伝送されアンプのフォトダイオー ドで受光する仕組みになっている。ゲインが 10⁸ V/Aのアンプにより電圧に変換され、通常サンプ リング時間 1us でデジタイザによって収集される。

図 2. (a)4 方向からみた Ar プラズマの線積分発光強度, (b)8ch のシグナル用いた発光強度のパワースペクトル

実験結果の一例として、図2(a)、(b)にアルゴン プラズマを観測したものを示す。運転パラメータ は, ガス圧 3 mTorr, 磁場 900G, RF パワー2kW, 電子温度は 3eV, 放電時間 500ms である。図 2(a) は Arll ラインの発光プロファイルで、4 方向から それぞれ16チャンネル合計16×4=64チャンネル で観測されている。ここでは隣り合うチャンネル の間隔は10mm である。それぞれのデータは放電 時間 t=195-205ms の平均値である。グラフからプ ラズマの分布に非対称性が見られている。図2(b) にはプラズマ中心の視線から得られたデータに FFT を行い、スペクトル解析をした結果をガス圧 の異なる2つの例(1mTorr, 3mTorr)で示している。 また,双方とも十分な SN 比で揺らぎ,特にピー クが計測されている。さらに現在, ART(Algebraic Reconstruction Technique)法を用いたトモグラフィ のアルゴリズムの開発も行っている。

今後、トモグラフィにより ArII の発光の偏在し ている場所を特定するとともに、コヒーレントな モードの空間分布を求める予定である。本講演で はその結果とともに、ArII の観測とともに ArI に ついての観測結果を報告する。

【参考文献】

[1] H Arakawa et al Plasma Phys. Control. Fusion **53** 115009 (2011)