05pD13P

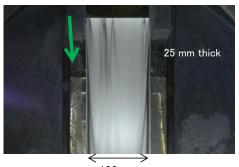
IFMIF/EVEDAプロジェクトの進展と今後の展開; ターゲット系開発の進展 **Progress and Scheme of IFMIF/EVEDA Project; Lithium Target Facility**

若井栄一¹,渡辺一慶¹,井田瑞穂¹,近藤浩夫¹,金村卓治¹,古川智弘¹,平川康¹,新妻重人¹,藤城興司¹,中庭浩一¹,伊藤譲¹,杉本昌義¹,帆足英二²,吉橋幸子²,芹澤久²,川人洋介²,深田智³,鈴木晶大⁴,八木重郎⁵,辻義之⁶,古谷一幸⁷,Fridrich Groeschel⁸, Juan Knaster⁸, Micciche Gioacchino⁹, Angel Ibarra¹⁰, Roland Heidinger¹⁰, Nitti Francesco¹⁰

Eiichi Wakai¹, Kazuyuki Watanabe¹, Mizuho Ida¹, Hiroo Kondo¹, Takuji Kanemura¹, Tomohiro Furukawa¹, Yasushi Hirakawa¹, Shigeto Niitisuma¹, Kouji Fujishiro¹, Kouichi Nakaniwa¹, Yuzuru Ito¹, Masayoshi Sugimoto¹, Eiji Hoashi², Sachiko Yoshihashi-Suzuki², Hisashi Serizawa², Yosuke Kawahito², Satoshi Fukada³, Akihiro Suzuki⁴, Juro Yagi⁵, Yoshiyuki Tsuji⁶, Kazuyuki Furuya⁷, Fridrich Groeschel⁸, Juan Knaster⁸, Micciche Gioacchino⁹, Angel Ibarra¹⁰, Roland Heidinger¹¹, Nitti Francesco¹¹

¹日本原子力研究開発機構,²大阪大学,³九州大学,⁴東京大学,⁵核融合科学研究所,⁶名古屋大学,⁷八戸工業 高等専門学校,⁸ Project Team of IFMIF/EVEDA Project,⁹ENEA,Brasimone,¹⁰ Fusion for Energy,¹¹ Siemat ¹ Jappan Atomic Energy Agency,² Osaka University,³ Kyushu University,⁴ Tokyo University,⁵ NIFS,⁶ Nagoya University,⁷ Hachinohe National College of Technology,⁸ Project Team of IFMIF/EVEDA Project, ⁹ENEA,¹⁰ Siemat ¹¹ Fusion for Energy,

1. Introduction and objective


Fusion reactor materials development needs a high energy and high-density neutron source to simulate the neutrons generated by fusion reactions. Therefore, the construction of the International Fusion Materials Irradiation Facility (IFMIF) is being studied. The objective of IFMIF is to generate the neutrons by injecting the deuteron beams accelerated to high energy onto the 260 mm wide and 25 mm thick free-surface lithium flow. Guiding the liquid lithium along the concave back plate at a speed of 15 m/s is required to increase the pressure in the lithium flow by centrifugal force, to avoid boiling by the heat input of the deuteron beams, and to remove heat by the lithium flow circulation. It enables the target geometry to be maintained at the time of heat input, which is unexpected for solid target, and realizes the steady-state neutron source. Basic experiments of lithium flow in a test facility with small amounts of lithium had been conducted in the past, but the flow was suspected to be less stable in the conditions of the faster lithium flow and under high flow rate of lithium, and so the validation of high-speed free-surface flow at full scale has been a challenging subject. To develop the IFMIF design, IFMIF/EVEDA (Engineering validation and engineering design activity) has been started from 2007.

2. Progress and Scheme of IFMIF/EVEDA project

As shown in Fig. 1, EVEDA Lithium test loop (ELTL) has now constructed and operated a liquid lithium flow test facility with the world's highest flow rate, and succeeded in generating a 100 mm wide and 25 mm thick free-surface lithium flow along a concave back plate steadily at a high-speed of 20 m/s at 300°C for the first time in the world as shown in Fig. 2. This result will greatly advance the development of an accelerator-based neutron source to high energy and high-density, one of the key objectives of the fusion reactor materials development under the BA Activities. The source generates neutrons by injecting deuteron beams onto the free-surface of the lithium jet.

Fig.1 EVEDA Lithium Test Loop

100 mm Fig.2 Li flow with free surface (20 m/s)

The recent related engineering validation and engineering design of lithium facility is also developed and summarized.

3. Summary

This project is being performed from the middle of 2007.
ELTL was constructed in Oarai-JAEA, and the validation of ELTL is shown in this conference and it is under a great progress.

(3) Engineering Design of Lithium target facility was summarized on June 2013. The intermediate IFMIF engineering design was produced by all EVEDA team.