05aD03P

VPS-W へのパルス熱負荷と He プラズマ同時照射によるアーキング

Arcing by pulse heat load and He plasma simultaneous irradiation on VPS-W

版本雄祐、上田良夫、大塚裕介、LEE HEUN TAE、田中泰史、勝間洋行 SAKAMOTO Yuusuke,UEDA Yoshio,OHTSUKA Yuusuke,LEE Heun tae, TANAKA Yasufumi,KATSUMA Hiroyuki

> 大阪大学大学院工学研究科 Graduate School of Engineering, Osaka University

1. Introduction

In the blanket of the nuclear fusion DEMO reactor, the use of layered materials of W (tungsten) and F82H (reduced activation ferritic/martensitic steel) is planned. For W, there are advantages such as a low erosion rate, a high melting point, and a high thermal conductivity as plasma facing materials, on the other hand, F82H can carry a role as structure body of the blankets. A method to thin coating of W on the surface of F82H using VPS (Vacuum Plasma Spray) technology is widely used. A study on VPS-W has been required to evaluate its feasibility for the use in DEMO reactors. In this study we simulated ELM (Edge Localized Mode) like heat loading effects on VPS-W by YAG laser pulse heat loads and He plasma simultaneous irradiation to observe the effects of the ELM like heat loads on VPS-W. From our preliminary experiments, it was found that arcing occured on VPS-W by the pulse heat load and He plasma simultaneous irradiation.

2. Experiment

All experiments were conducted at LaPlex (Laser and Plasma EXposure device). The heat load of ELM was applied by Nd-YAG pulse laser. The exposed energy fluence was changed up to 7.0 MJ/m^2 with effective pulse duration of 130µs (long pulse mode). The incident He flux was varied up to $\sim 10^{21}$ /m²s and the fluence up to $\sim 10^{25}$ /m². After simultaneous irradiation, the specimen surface was observed by SEM (Scanning Electron Microscope).

3. Results

With simultaneous pulsed heat loading and He plasma irradiation, arcing were observed on the VPS-W surface. In previous study, arcing was also observed on pure W with fuzzy surfaces [1]. In this poster presentation, I will show the conditions to induce arcing on VPS-W.

4. Reference

[1] Shin Kajita, Plasma Physics and Controlled Fusion 54(2012)035009(9pp).