04pA01

核融合原型炉の安全性研究 Research toward safety-oriented fusion DEMO reactor

中村 誠¹、飛田 健次¹、染谷洋二¹、谷川尚¹、Werner Gulden² Makoto NAKAMURA¹, Kenji TOBITA¹, Youji SOMEYA¹, Hisashi TANIGAWA¹, Werner GULDEN²

¹原子力機構,² Fusion for Energy ¹JAEA,² Fusion for Energy

1. はじめに

これまでの核融合炉の安全性研究から、核融 合炉の安全上の特徴は、構造材、トリチウム増 殖・増倍材、冷却材等の選択と組合せに依存す ることが知られている。しかし、これまでの核 融合炉の安全性研究では、主だった解析条件は 設計側から与えられるという制約下で行われ ており、核融合炉の安全性の向上よりも、安全 性の確認という観点が強かった。

幅広いアプローチ(BA)原型炉設計活動で実施する安全性研究は、そのような問題意識を出 発点にしており、炉設計と同時並行で実施する。 例えば、ある想定異常事象の解析を行い、その 事象に対する安全系の有効性が確認されれば、 設計の基本概念まで立ち返って、システム、建 屋、プラント設計に反映する。

本研究は2013年4月に着手されたばかりであ り、準備段階の研究が大部分であるが、研究の 全体像、考え方、今後の展望について報告する。

2. 核融合原型炉の安全要件

ITER日本誘致活動で構築した安全要件[1]に 基づき、原型炉の安全要件を以下のように設定 した。

- 平常時において環境中に放出される放射 性物質及び施設から直接放出される放射 線に対して、公衆及び従事者に対する放射 線防護が適切になされること。
- 放射性物質を内蔵する機器等の安全を確 保することにより、事故の発生防止が適切 に図られること。
- 放射性物質の環境放出を低減し、公衆の放 射線リスクが安全になる程度まで施設外 の公衆被ばくを抑制するよう、事故の影響 を緩和する。

ITER日本誘致活動の安全要件は、ITERの安全 上の特徴を踏まえて構築されたものであるが、 原型炉でも適用可能であると考えている。 本研究では、安全設計・評価の目標として、 敷地境界において初期被ばく線量を最大20 mSvとした。緊急退避を要しないとされるIAEA 指針は50mSvであり、これまでの欧米の核融合 炉安全性研究では50~100mSvと設定しているこ とと比較し、かなり厳しい線量目標といえるが、 原子力災害に対する社会の目の厳しさを鑑み ると、このような意欲的な目標設定が不可欠と の判断に至った。

3. 解析対象とする原型炉

原型炉設計と同時並行で安全性研究を行う とはいえ、"初期条件"としての原型炉の設計値 は必要である。"初期条件"原型炉の基本的な仮 定は以下の通りである。

- 第一壁、ブランケット、ダイバータ、真空 容器の冷却には軽水炉と同様の使用条件 の加圧水を用いる。
- ブランケットは日本国内ITER TBM設計活 動とBA原型炉R&D活動の知見に基づく。 構造材にF82H、トリチウム増殖剤にLi-Ti 化合物(Li₂TiO₃)、中性子増倍材にBe-Ti化合 物(Be₁₂Ti)を用いる。
- 超伝導コイル技術はITERのものに基づく。
 超伝導線材はNb₃Snとし、ITER級のコイル
 設計条件を用いる。

4. 閉じ込め障壁の設定

安全系の設計において、放射性物質の閉じ込 め障壁の設定は最重要項目の一つである。この 基本的方針はITERの安全設計に基づく。つまり、 原型炉の放射性物質の閉じ込め障壁は2段階 とする。第1障壁は真空容器と接続機器(真空 容器圧力抑制系など)、さらに炉内機器の冷却 系統であり、第2(最終)障壁は炉建屋とスタ ックである。

5. 内包エネルギーとソースターム

安全上の特徴の把握、想定事故の解析、安全 系の設計等、安全性研究のあらゆる検討の基礎 は、炉が内包する放射性物質ソースタームとそ れを可動化する内包エネルギーの把握である。 ここでは、原型炉設計値をプラズマ大半径R_n~ 8m、アスペクト比A~3.0、電気出力P_{net}~300 MW、核融合出力P_{fus}~1.4-2.0 GWと仮定して、 内包エネルギーを評価した。評価結果を表1に 示す。比較としてITERの内包するエネルギーも 示している。

表1に示すように、原型炉のエネルギーのう ち、冷却材エンタルピーが最も大きい。その一 方、ITERが内包するエネルギーでは、プラズマ の熱・電磁エネルギーが最も大きい。このよう に、原型炉では冷却材インベントリの最適化、 冷却材が絡む事故の防護系・緩和系の設計がよ り重要になる。また、ITERと比較して崩壊熱は シャットダウン後1日~1ヶ月で極めて大きい。 このため、原型炉では冷却機能喪失時における 崩壊熱除熱系の設計も重要になる。

原型炉が内包する放射性物質ソースターム を定量的に同定することは現段階では難しい。 まずはITERと同様の値を仮定する。すなわち、 真空容器内のトリチウムを1 kg、放射化タング ステンダストを1 ton (管理値) とする。

表1 ITFRと原型炉が炉内に有すろエネルギー・パワー

		ITER	DEMO	DEMO/ITER
プラズマ	熱エネルギー (GJ)	350	870	2.5
	電磁エネルギー (GJ)	400	450	2.4
マグネット	磁気エネルギー (GJ)	50	120	2.4
冷却材(加圧水)	保有エンタルピー (第一壁、ブランケット)(GJ)	260	1,300	5.0
	保有エンタルピー (ダイバータ)(GJ)	90	230	2.5
崩壊熱	炉停止直後 (MW)	11	38	3.5
	停止後1日 (MW)	0.6	8.3	14
	停止後1ヶ月 (MW)	0.3	2.2	7.3

6. 事故シナリオの分析

詳細な炉設計が決まっていない段階では、各 機器・システムの故障率を用いて各事故シナリ オの発生確率を定量評価するのは難しい。そこ で本研究では、システムの機能に着目して原型 炉で起こりうる事故シナリオを分析した。

その結果、原型炉で起こりうる事故シナリオ として22のシーケンスを抽出した。多くの事故 シーケンスはITER国内誘致の際に抽出したも のと一致するが、原型炉特有の事故シーケンス として、ブランケット内部での冷却材喪失を起 因事象として真空容器を加圧するシーケンス を抽出した。この分析に基づき、原型炉で重要 となる起因事象を選定した。選定した事象と選 定理由を表2に示す。

表2 抽出した原型炉の事故起因事象

起因事象名	選定理由			
FW/DIV LOFA	 多くのシーケンスの起点となる 冷却材エンタルピーが大きい 			
FW/DIV in-VV LOCA	同上			
FW/DIV ex-VV LOCA	同上			
LOVA	 第1障壁を直接破る 			
In-BLK LOCA	• 原型炉特有の事象			

研究の現状と今後の展望

以上の検討を基礎として、安全設計に関する より定量的な検討と公衆被ばく線量評価を現 在行っている。講演ではその現状と課題につい て報告する。

安全設計・評価の被ばく線量目標と安全設計 を関連づけるには、事故時に建屋から放出され る放射性物質と線量目標の関係を把握しなけ ればならない。本研究では、トリチウム被ばく 評価コードACUTRI [2]とUFOTRI [3]を用いて、 トリチウム放出量、被ばく線量、スタック高さ の関係を評価している。講演では特にトリチウ ム被ばく評価モデルの比較検討結果とモデリ ングの課題について報告する。

さらに、表2に抽出した事故事象に対処する ため、能動的・受動的の両面から安全系の設計 検討を行っている。ITERよりも閉じ込め障壁へ の脅威が大きい原型炉の安全性を追求するに は挑戦的な課題であり、そのためには設計上の 工夫が必要である。本研究の特色は、これまで にない新しい安全系設計、さらに安全性を志向 した炉設計を検討する点にある。具体的には、 電源喪失時も作動可能なトリチウム除去系、第 一壁とブランケットの冷却系統の独立化など である。また、表1に示したように、原型炉で は冷却水エンタルピーが大きいので、1次冷却 系の保有水の最適化も検討している。講演では これらの安全設計の現状と技術的課題につい ても報告する。

(1) 文科省ITER安全規制検討会、「ITERの安全確保 について」(2003)
 (2) 横山 他, JAERI-Data/Code 2002-022 (2002)
 (3) W. Raskob, Report KfK-5194 (1993)