03pC12

高フラックス照射下でのTFGRタングステン中の水素同位体挙動

Deuterium Retention in TFGR W (Toughened, Fine-Grained Recrystallized W) under high-flux irradiation

大宅 諒¹⁾, 大塚裕介¹⁾, 上田良夫¹⁾, 栗下裕明²⁾,

小柳津誠³⁾, 山西敏彦³⁾, Thomas Morgan⁴⁾, Gregory De Temmerman⁴⁾ OYA Makoto¹⁾, OHTSUKA Yusuke¹⁾, UEDA Yoshio¹⁾, KURISHITA Hiroaki²⁾, OYAIDZU Makoto³⁾, YAMANISHI Toshihiko³⁾, Thomas Morgan⁴⁾, Gregory De Temmerman⁴⁾

1)大阪大学大学院工学研究科 2)東北大学金属材料研究所

3)日本原子力研究開発機構 4)オランダ基礎エネルギー研究所

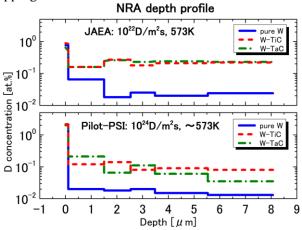
Graduate School of Engineering, Osaka Univ.
Institute for Material Research, Tohoku Univ.
Japan Atomic Energy Agency
Dutch Institute for Fundamental Energy Research (DIFFER)

1. Introduction

Tungsten (W) is a leading candidate for use as a plasma-facing material (PFM) in a fusion reactor, and will be used in the divertor of ITER. To improve the mechanical properties of W (room temperature brittleness and neutron irradiation embrittlement), TFGR W (Toughened, Fine-Grained Recrystallized W) was developed by Kurishita at Tohoku University [1]. TFGR W has an average grain size of $\sim 1 \,\mu m$ with a small amount of TiC or TaC dispersoids which enhances toughness and increases ductility. However, tritium retention properties of TFGR-W under fusion relevant plasma exposure conditions are not well known.

In our previous study using ion beams (~ 10^{20} D/m²s), we observed increased deuterium (D) retention in TFGR W compared to pure W. In this study, we investigated D retention in TFGR W exposed to higher fluxes (10^{22} or 10^{24} D/m²s) using linear plasma machines in order to increase the D retention database of TFGR W and examine flux dependency.

2. Experiment


TFGR W-1.1wt%TiC (W-TiC) and TFGR W-3.3wt%TaC (W-TaC) specimens of 10 x 10 x 1 mm size were used. These specimens were exposed to D plasma in two types linear plasma generators; at JAEA [2] and Pilot-PSI at DIFFER [3]. The specimen was biased at 50 V and the incident D flux was $\sim 1 \times 10^{22}$ $m^{-2}s^{-1}$ and $\sim 1 \times 10^{24} m^{-2}s^{-1}$, respectively. Deuterium fluence up to $\sim 1 \times 10^{26} m^{-2}$ was implanted at temperatures of 573 - 773 K. Following implantation, D retention was measured by Nuclear Reaction Analysis (NRA) and thermal desorption spectroscopy (TDS). For comparison, pure W specimens were also exposed at similar conditions. Surface morphology was observed by Scanning Electron Microscope (SEM).

3. Results and Discussion

D depth profiles measured by NRA are shown in Fig. 1 for W-TiC, W-TaC, and pure W specimens for the

two different linear plasma devices. In both cases, the trapped D concentration in TFGR W was higher than pure W. Specifically, in the near surface layer $(1 - 8 \mu m)$ D trapped in TFGR-W was 10 and 5 times higher than pure W following exposure at JAEA and Pilot-PSI, respectively. From TDS measurement, the total D retention in TFGR W (W-TiC and W-TaC) was approximately 7 times higher than compared to pure W, in the case of JAEA plasma exposure. Typically, a dominant peak at ~700 K with a smaller trailing shoulder up to 1100 K was observed. SEM revealed the presence of small blisters on TFGR W surface, following exposure at Pilot-PSI.

In this presentation, we discuss the flux dependency of D retention in TFGR the role of dispersoids (TiC or TaC) and crystalline structure on D trapping in TFGR W.

Figure.1 D depth profile in W materials (pure W, TFGR W-1.1wt%TiC and TFGR W-3.3wt%TaC), irradiated at JAEA (upper) and Pilot-PSI (lower)

Referance

- [1] H. Kurishita et al., J. Nucl. Mater. **398** (2010) 87-92.
- [2] G.-N. Luo et al., Rev. Sci. Instrum. **75** (2004) 4347.
- [3] Van Rooij et al., Appl. Phys. Lett. **90** (2007) 121501