03aE45P

ヘリオトロンJにおけるプローブによる最外殻磁気面周辺の揺動構造観測 Observation of fluctuation structure using Langmuir probes around last closed flux surface in Heliotron J

大島慎介¹、橋本航平²、小林進二¹,山本聡¹,長崎百伸¹,水内亨¹,岡田浩之¹,南貴司¹, 門信一郎¹,史楠¹,木島滋¹,L. Zang²,釼持尚輝²,笠嶋慶純²,佐野史道¹ S. Ohshima¹, K. Hashimoto², S. Yamamoto¹, K. Nagasaki¹, *et al*,

> 京大エネ理工¹、京大エネ科² IAE, Kyoto Univ.¹, GSES, Kyoto Univ.²

Turbulence behavior around last closed flux surface (LCFS) is a key issues in plasma fusion researches since plasma performance is substantially influenced by turbulence characteristics around edge region, as observed in transition phenomena to improved confinement modes. In an advanced helical axis heliotron device, Heliotron J, edge fluctuation has been studied using multiple Langmuir probes installed at different toroidal/poloidal sections [1-3].

In low-density ECH plasma discharges with ne ~ $0.3 \times 10^{19} \,\mathrm{m}^{-3}$, a strong correlation between floating potential signals measured with different probes was observed in the low frequency range less than 10 kHz, as shown in Figure 1. This fluctuation has electrostatic characteristics because correlation with magnetic probe signals was not observed. Radial structure of the fluctuation was investigated by fixing one probe inside LCFS and scanning the other probe around LCFS in radial direction on a shot-to-shot basis. Figure 2 shows radial profiles of coherence and phase difference between floating potential signals of these different probes. Clearly, quite high coherence of ~0.95 is observed inside LCFS in the frequency range, and the value quickly decreases outside LCFS. The phase difference is almost zero around the location where high correlation exists. This characteristics are quite similar to those of a phenomenon called long range correlation [4].

In the presentation, details of the characteristics of the low frequency fluctuation around LCFS will be shown and discussed.

[1] T. Obiki et al., Plasma Phys. Control. Fusion **42**, 1151 (2000).

[2] F. Sano et al., Nucl. Fusion., 45, 1557 (2005).

[3] S. Ohshima et al., 24th IAEA Fusion Energy Conference, EX/P4–17(2012)

[4] M. A. Pedrosa et al., Phys. Rev. Lett. 100 215003(2008)

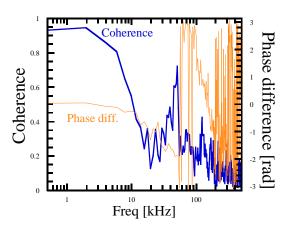


Fig. 1 Coherence and phase difference between floating potential signals measured with toroidally separated probes.

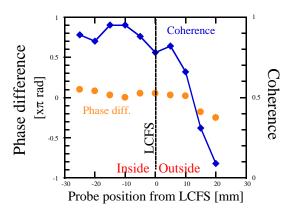


Fig. 2 Radial profile of coherence and phase difference around LCFS between floating potential signals measured with a fixed probe and scanned probe.