非中性電子プラズマにおけるautoresonanceの実験 Experiments on autoresonances in nonneutral electron plasmas

桧垣浩之、安保雄平、伊藤清一、岡本宏巳
H. Higaki, Y. Abo, K. Ito, and H. Okamoto

広島大学 大学院先端物質科学研究科 Graduate School of Advanced Sciences of Matter, Hiroshima University

Autoresonance is a nonlinear phase locking phenomenon, which was originally studied for particle accelerators. As for the non-neutral plasmas are concerned, the autoresonance of m = 1 diocotron oscillations have been reported [1,2] and the autoresonant excitation of axial harmonic oscillation for antiproton plasmas has been used to produce and confine anti-hydrogen atoms [3].

When a charged particle (of mass *m* and charge *q*) is confined in a potential $\phi = -V_0 \cos z$, the equation of motion is given by $\ddot{z} + \omega_0^2 \sin z = 0$ $(\omega_0^2 \equiv qV_0/m)$ without a driving force. To consider the effect of the autoresonance [4,5], the driving force is introduced whose frequency changes linearly as a function of time. Then the equation of motion becomes as follows

$$t + \omega_0^2 \sin z = \varepsilon \cos(\omega_0 t - \alpha t^2/2)$$

where a constant α is defined as a sweep rate and ε is proportional to the drive amplitude. The theory predicts that there is the threshold amplitude V_{th} for the autoresonance excitation and it is proportional to $\alpha^{3/4}$. Notice that this is a single particle model.

In ref.[3], the autoresonant excitation of axial oscillations was demonstrated for 5×10^4 anti -protons. The main concern of the present experiment is to confirm if the autoresonant excitation of the axial oscillation is applicable for a non-neutral plasma consisting of $10^6 - 2 \times 10^7$ electrons (or positrons).

As shown in Fig.(a), about 10^7 electrons are confined radially with a uniform magnetic field of B~190 G and axially by a quasi-harmonic potential, which is shown in Fig. (b). When the amplitude of axial oscillation is small, the linear oscillation frequency is about 9.5MHz in the harmonic potential $\propto (r^2 - 2z^2)$ and the frequency becomes smaller for the larger amplitude. So far, it was confirmed by the measurement of excited oscillation frequency that the threshold amplitude V_{th} is proportional to $\alpha^{3/4}$ as shown in Fig. (c). The details of experimental results will be reported.

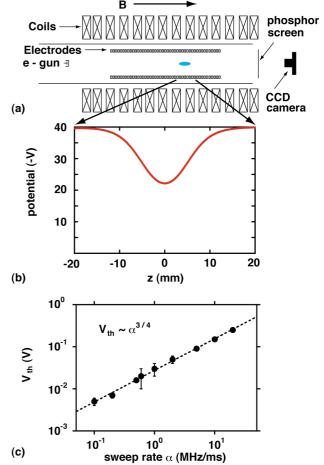


FIG.(a) A schematic of the experimental setup. (b) The confinement potential on the axis of symmetry. (c) The threshold amplitude of the autoresonant excitation is proportional to $\alpha^{3/4}$ for 2×10^7 electrons.

[1] J. Fajan, E. Gilson and L. Friedland, Phys. Rev.

Lett. 82 (1999) 4444.

[2] J. Fajan, E. Gilson and L. Friedland, Phys. Rev. E **62** (2000) 4131.

[3] G. B. Andresen, et al., Phys. Rev. Lett. **106** (2011) 025002.

[4] J. Fajan, E. Gilson and L. Friedland, Phys. Plasmas 6 (1999) 4497.

[5] J.Fajan and L.Friedland, Am.J.Phys.69(2001)1096.