仮想インベッセルコイルを用いたQUESTダイバータプラズマ形状再構成 QUEST Divertor Plasma Shape Reproduction with Virtual In-Vessel Coil

中村 一男¹, 劉 暁龍², 薛 二兵¹, 夏凡³, 御手洗 修⁴, 栗原 研一⁵, 川侯 陽一⁵, 末岡 通治⁵, 長谷川 真¹, 徳永 和俊¹, 図子 秀樹¹, 花田 和明¹, 藤澤 彰英¹, 松岡啓介, 出射 浩¹, 永島 芳彦¹, 川崎 昌二¹, 中島 寿年¹, 東島 亜紀¹, 荒木 邦明¹, 福山 淳⁶
K. Nakamura¹, X.L. Liu², E.B. Xue¹, F. Xia³, O. Mitarai⁴, K. Kurihara⁵, Y. Kawamata⁵, M. Sueoka⁵, M. Hasegawa¹, K. Tokunaga¹, H. Zushi¹, K. Hanada¹, A. Fujisawa¹, H. Idei¹, Y. Nagashima¹, S. Kawasaki¹, H. Nakashima¹, A. Higashijima¹, K. Araki¹, A. Fukuyama⁶

¹九大応力研, ²九大総理工, ³中国SWIP, ⁴東海大, ⁵原子力機構, ⁶京大工 ¹RIAM, Kyushu Univ., ²IGSES, Kyushu Univ., ³SWIP, China, ⁴Tokai Univ., ⁵JAEA, ⁶Kyoto Univ.

QUESTでは球状トカマクプラズマの定常維持法の 一方法として、OHプラズマにてダイバータ配位を形 成し、EBW電流駆動により定常維持することを計画 している。PF35-12直列ダイバータコイルを用いたキ ャンディ状(低δ)ダイバータ配位とPF35-1内側ダイ バータコイルを用いたD形(高δ)ダイバータ配位に ついて、2種類の磁気センサー(フラックスループ、 磁気プローブ)を用いてダイバータ配位プラズマ断面 形状をCCS法にて再構成している。

RF立上/維持プラズマ(右図)に関しては、電流密 度分布が閉磁気面より低磁場側にシフトしている。 EFIT解析では閉磁気面内に電流密度分布(圧力は等 方的)を仮定するため、電流密度分布は閉磁気面内で 低磁場側にシフトするとともに、強磁場側に異符号の 電流密度領域が現れる(下図)。閉磁気面外の低磁場 側開磁気面に沿った仮想インベッセルコイルに全プ ラズマ電流の約30%の電流を仮定すると、異符号の電 流密度領域は消滅する(右下図)。

2種類の磁気センサー(FL, MP)信号により適合条件を強化した場合、圧力分布の異方性に依存しない CCS法を適用した場合の再構成結果についてはポス ターにて報告する。

