ヘリオトロンJにおける径方向多チャンネルプローブを用いた 周辺プラズマ計測

Edge Plasma Measurement with Radial Array Probe in Heliotron J

橋本紘平¹,大島慎介²,中村祐司¹,笠嶋慶純¹,大谷芳明¹,水内亨²,長崎百伸²,岡田浩之², 南貴司²,小林進二²,山本聡²,木島滋²,史楠²,文野道尚¹,西岡賢二¹,野口直樹¹,丸山正人¹, L. Zang¹, H. Y. Lee¹,荒井翔平¹,沙夢雨¹,釼持尚輝¹,永榮蓉子¹,原田伴誉¹,和多田泰士¹, 福島浩文¹,杉本幸薫¹,安田圭祐¹,中村雄一¹,佐野史道²

Kohei HASHIMOTO¹, Shinsuke OHSHIMA², Yuji NAKAMURA², Keijun KASAJIMA¹, et al.

京大エネ科¹, 京大エネ理工² GSES Kyoto Univ.¹, IAE Kyoto Univ.²

Transport characteristics in magnetic confinement plasmas are strongly affected by micro- and macro-scopic plasma fluctuations caused by various instabilities. In particular, confinement property around plasma edge is of great significance for the higher plasma performance. Langmuir probes diagnostics are commonly used to measure local physical quantities such as electron temperature electron density and space potential of edge plasmas. However, the disturbance to the plasma caused by the interaction between plasma and probes can be a crucial problem, particularly, in a temperature plasma. high For this reason. reproducibility of the plasma conditions becomes worse in the probe experiment, and it is not favorable to obtain profile data through shot-by-shot experiment. In order to avoid such a problem, we designed a new radial array probe for the purpose of efficient profile measurement and experiments efficiently.

Newly designed radial array probe is shown in Fig.1. Carbon pins with 1 mm diameter are used as probe tips at the probe top. The distances of each pin are 2 mm. These pins can be used as the triple probe, and are also utilized for the evaluation of particle flux. At the probe side, tungsten pins with 2 mm in diameter are used as probe tips and the distances of each pin are 5.0 mm. All the probe pins are fixed and insulated by boron-nitride parts and the insulator is supported by the molybdenum structure. The probe head is covered with the carbon plate. The radial array pins are used for floating potential or ion saturation current measurement. Moreover, heat flux can be measured using a thermocouple embedded into the copper plate at the probe side.

A typical example of floating potential profile measured around last closed flux surface (LCFS) with the radial array probe is shown in Fig.2 (a). For comparison, the profile obtained by scanning the probe through shot-by-shot experiment was also shown in Fig.2 (b). The former profile was obtained in a single shot and the latter profile was obtained in ten shots of plasma discharges. It can be seen that the shapes of these profiles are very similar, suggesting that the profile measurement is certainly possible using the developed radial array probe. In this experiment the plasma density was comparatively low and the interaction can be negligible.

In the presentation, we will also discuss the details of the newly developed radial array probes and the analysis results for the profile and fluctuation data.

Fig. 1 Radial array probe

Fig. 2 Floating potential profile (a) obtained using the radial array probe in a single shot and (b) obtained in ten shots of plasma discharges