安全性に着目したD-³Heトカマク型核融合炉の概念設計 Conceptual Design of D-³He Tokamak Fusion Reactor Focusing on Safety

細川康二, 小川雄一, 岡野邦彦 HOSOKAWA Koji, OGAWA Yuichi, OKANO Kunihiko

東大新領域

Graduate School of Frontier Sciences, the University of Tokyo

1. Introduction

The D-³He fusion reactor has many advantages such as lower neutron productions and tritium inventory compared with D-T and D-D reactors from the safety point of view. Therefore, the D-³He reactor is expected to be used as fusion energy source in the future.

In this study, we have investigated plasma physics and engineering condition on the D-³He tokamak reactor. In addition, considering with secondary D-D reaction and tertiary D-T reaction, we estimate the neutron production, wall loading and the tritium fuel cycle in the reactor for the evaluation of safety.

2. Reactor design model and design constraints

The D-³He reactor design has been analyzed with the conceptual design code (DRIVER) [1] which was modified to calculate the D-³He reaction. Input parameters are listed in Table 1. In this study, we choose 5 MeV NBI because of high current drive efficiency at 50 keV plasma. The overall efficiency for current-drive system is assumed to be 80% assuming that the RFQ and the laser photo detachment neutralizer are used [2]. The parameters such as n_e/n_{GW} , β_{N} , H_{Hy2}, P_{f} are converged in self-consistent values. The value of q_{95} and q_0 are constrained to be more than 3.0, 1.0, respectively. $P_{\text{e,net}}$ and P_{w} are also restricted so that $P_{\text{e,net}} \ge 1.0 \text{ GW}$, $P_{\text{w}} \le 1.0 \text{ MW/m}^2$, respectively.

All the tritium particles generated by the D-D reaction are reused as fuel in this reactor to minimize stored tritium. In line with this principle, the density of T in the plasma must be controlled to keep equality between the rates of its consumption and production as follows;

$$\frac{1}{2}n_D^2 \langle \sigma v \rangle_{D-D(p,T)} = n_D n_T \langle \sigma v \rangle_{D-T}.$$
 (1)

3. Results

Figures 1 and 2 show the dependence of β_N and n_e/n_{GW} on *A* for *R* from 6 to 12. In Fig. 1, we plot β_N limit value as a function of *A* and κ induced by Lin-Liu et al [3] and some reactor β_N values [2, 4, 5].

Table 2 is a list of the reference design parameters which are indicated as 'design point' in Fig. 1 and Fig. 2, respectively. By Eq. (1), the ratio of tritium to fuel $n_{\rm T}/n_{\rm f}$ is determined 0.0033 in this point.

References

- K.Okano, Y.Ogawa and H.Naitou, Plasma Phys. Control Fusion 32, 225 (1990).
- [2] F.Najmabaji, R.W.Conn, et al., UCLA report

UCLA-PPG-1384.

- [3] Y.R.Lin-Liu, R.D.Stambaugh, Nucl. Fusion 44 (2004) 548
- [4] K.Tobita, S.Nishio, M.Sato, et al., Nucl. Fusion **47** (2007) 892.
- [5] H.Shimotohno, et al., Fusion Eng. Design 69 (2003) 675.

Table 1. Input parameters			
Elongation κ_{95} /Triangularity δ_{95}	2.0/0.35		
NBI energy $E_{\rm b}$ (MeV)	5		
Effective charge $Z_{\rm eff}$	1.76		
Effective reflection coefficient of wall R_{syn}	0.95		
Thermal conversion efficiency η_{TD} (%)	45		
Current drive system efficiency η_{CD} (%)	80		

Fig.2. Variation of n_e/n_{GW} versus aspect ratio for *R* from 6 to 12.

Table 2. Reference design parameters

<i>R/a</i> (m)	10/4.17	$I_{\rm p}({\rm MA})$	60
A	2.4	$f_{\rm BS}$	0.86
$T_{\rm e}/T_{\rm i}$ (keV)	46/50	q_{95}/q_0	3.79/2.1
$n_{\rm e}/n_{\rm f} (10^{20}{\rm m}^{-3})$	1.25/0.79	H_{Hy2}	1.88
$n_{\rm 3He}/n_{\rm D}$	1	$P_{\rm f}/P_{\rm con}~({\rm MW})$	2900/778
$n_{\rm T}/n_{\rm f}$	0.0033	$P_{\rm br}/P_{\rm syn}({\rm MW})$	942/1080
$n_{\rm e}/n_{\rm GW}$	1.14	$P_{e,net}$ (MW)	1150
$B_{\rm T}$ (T)	7.2	$P_{\rm w,n}$ (MW/m ²)	0.082
$\beta_{\rm N}/\beta_{\rm t}$	5.28/0.11	$P_{\rm w}/P_{\rm w,div}$ (MW/m ²)	0.82/30.9
$\rho_{\rm N}/\rho_{\rm f}$	5.20/0.11		0.02/30.9