Linac4 水素負イオン源における RF-ICP プラズマ加熱過程の解析

Analysis of RF plasma heating process in the Linac4 H⁻ ion source

太田雅俊¹、S. Mattei²、J. Lettry²、畑山明聖¹、川村安史¹、安元雅俊¹ M. Ota¹, S. Mattei², J. Lettry², A. Hatayama¹, Y. Kawamura¹, M. Yasumoto¹

> 慶大理工¹、CERN² Keio Univ¹. CERN²

1. 目的

Linac4 は CERN の大型ハドロン衝突型加速器に用 いるため現在開発されている H-線形加速器である [1]。これらの負イオン源には6巻のソレノイドが巻 かれており、2MHzの電流が 100kW で流されている。 さらにその周りを Halbach 配位で永久磁石に囲まれ ている。これらの永久磁石は負イオン源内にカスプ 磁場を形成しており、プラズマの閉じ込め効果の向 上が期待されている。高周波(RF)型プラズマでは負 イオン源内のプラズマ密度が上昇することによる RF 波の反射が懸念されている。そのため高効率の加 熱を行うためには、イオン源内のプラズマ密度を制 御することが不可欠であり、プラズマ密度を解析す るためには負イオン源内での加熱過程を理解する必 要がある。しかし、Linac4 負イオン源において RF によるプラズマの加熱過程は明らかになっていない。 よって本研究の目的は Linac4 負イオン源内の加熱過 程を明らかにすることである。

2. 手法

本研究では RF プラズマの加熱過程に着目し、 Linac4 負イオン源内のプラズマに対して運動論的な モデリングを用いた。このモデルでは荷電粒子の輸 送と電磁場を自己無撞着に解析するために、2D3V Electromagnetic Particle-In-Cell method with Monte Carlo Collision を採用した[2]。荷電粒子輸送は運動方 程式から解いた。電磁場による運動は LeapFrog 法を 用い、衝突項に関しては Monte Carlo 法を使った Null Collision 法によって解析を行った。粒子の輸送に関 しては両者とも3次元で計算した。電磁場について は RF 波およびプラズマ電流により発生する電磁場 と外部磁場を分けて計算した。RF 波とプラズマ電流 による電磁場は Maxwell 方程式から計算し、手法と しては Finite-Difference Time-Domain 法を用いた。こ の電磁場解析内では、軸対象を仮定し2次元で計算 を行った。一方、外部磁場については市販ソフトか ら求めた3次元磁場データを用いて計算を行った。

3. 結果

低密度プラズマについて、初期的な結果として外 部カスプ磁場の効果を考察した。カスプ磁場は側面 壁への荷電粒子損失を抑制させ、プラズマの閉じ込 め効果を増大させた。一方で、RF によるプラズマへ のジュール加熱を抑制し、イオン化率を減少させた。 両効果を比較すると、低密度プラズマにおいて、プ ラズマの閉じ込め効果より、加熱の抑制効果が大き くなり、カスプ磁場はプラズマ密度の増加を抑制す るという結果を得た。当日のポスターではイオン化 数、壁ロス数の時間変化を含めつつ、RF プラズマに おける外部磁場の効果についてより詳しく説明する 予定である。

[1] J. Lettry, et al., "H- ion sources for CERN's Linac4," 3rd International Symposium on Negative Ions, Beams and Sources, 2012.

[2] T. Hayami, et al., AIP Conf Proc, 1390, 339-347 (2011).