ヘリオトロンJにおけるNd:YAGトムソン散乱計測装置の 高精度散乱分光装置の開発 Development of high precision polychromator for scattering light of Nd:YAG Thomson scattering measurement for Heliotron J

<u>荒井翔平</u>¹, 南貴司², 釼持尚輝¹, 高橋千尋², 小林進二², 水内亨², 大島慎介², 山本聡², 岡田浩之², 長崎百伸², 李炫庸¹, 臧臨閣¹, 沙夢雨¹, 杉本幸薫¹, 永榮蓉子¹, 中村雄一¹, 橋本紘平¹, 福島浩文¹, 安田圭祐¹, 和多田泰士¹, 中村祐司², 木島滋², 佐野史道² <u>Shohei Arai¹</u>, Takashi Minami², Naoki Kenmochi¹, Chihiro Takahashi², Shinji Kobayashi², Tohru Mizuuchi², Shinsuke Ohshima², Satoshi Yamamoto², Hiroyuki Okada², Kazunobu Nagasaki², Hyunyong Lee¹, Linge Zang¹, Yukishige Sugimoto¹, Yoko Nagae¹, Yuuichi Nakamura¹, Kohei Hashimoto¹, Hirofumi Fukushima¹, Keisuke Yasuda¹, Hiroto Watada¹, Yuji Nakamura², Shigeru Konoshima², Fumimichi Sano²

> 1Graduate School of Energy Science, Kyoto University, Gokasho, Uji 611-0001, Japan 京都大学エネルギー科学研究科 〒611-0001 宇治市五ヶ庄
> 2Institute of Advanced Energy Science, Kyoto University, Gokasho, Uji 611-0001, Japan 京都大学エネルギー理工学研究所 〒611-0001 宇治市五ヶ庄

To investigate the plasma transport phenomena which change quickly, it is important to measure the time evolution of plasma profile with high accuracy. Therefore we are designing and developing a new Nd:YAG Thomson scattering measurement system for Heliotron J, which can measure the time evolution of electron temperature and density profiles. The Nd:YAG Thomson scattering measurement system consists of a laser and transmission system, a collecting system of scattering light, a polychromator system and a data acquisition system. In this paper, we focus on the results of the performance tests of the polychromator and the data acquisition systems.

The polychromator is a device to disperse the scattering light. One polychromator consists of 6Ch. detectors; 5Ch. are used for measuring scattering light intensity, and 1Ch. is used for density calibration. It outputs the scattering light intensity by dispersing specific wavelength using the interference filters. Furthermore, we designed and manufactured a pre-amplifier which amplifies the output signal and eliminates the background light. It was found that the polychromator has an enough performance to measure the electron temperature.

The data acquisition system is a system which can process the rapid scattering light signal under the condition that the laser pulse width is 10ns. This system acquires analog signal from the polychromator and it digitizes the analog signal with the charge integral type AD/C. The acquired data are transferred to the data acquisition computer, which is called CINOS. Finally, these data are analyzed by transferring to the analyzing computer. The wavelength of polychromator was calibrated to measure the plasma profile with high precision using a data acquisition system and a variable wavelength light source. The calibration method is to inject a varying wavelength light which comes from the light source to the polychromator by changing the wavelength of the monochromator. Next, the injected light is converted to the signal by the polychromator and transferred to the acquisition system. The Figure 1 shows the spectrum obtained by polychromator as an initial result. The green, lime green, blue, magenta and red line show Ch.1, Ch.2, Ch.3, Ch.4 and Ch.5, respectively. The minimum wavelength step size of the monochromator is 0.028nm, therefore we can calibrate polychromator with very high precision.

Fig.1 Initial result of the spectrum of a polychromator

Our next work is to measure the plasma profile of the electron temperature and density with more high precision and to investigate the plasma transport phenomena.